43,928 research outputs found
Isodontia Elegans Now in Michigan (Hymenoptera: Sphecidae: Sphecinae)
Isodontia elegans (Smith) (Hymenoptera: Sphecidae), one of the “grass- carrying wasps,” previously known only from the western U.S., is now reported from southeastern Michigan, and appears to have spread across the eastern half of the United States in a relatively short period
Spatiospectral concentration on a sphere
We pose and solve the analogue of Slepian's time-frequency concentration
problem on the surface of the unit sphere to determine an orthogonal family of
strictly bandlimited functions that are optimally concentrated within a closed
region of the sphere, or, alternatively, of strictly spacelimited functions
that are optimally concentrated within the spherical harmonic domain. Such a
basis of simultaneously spatially and spectrally concentrated functions should
be a useful data analysis and representation tool in a variety of geophysical
and planetary applications, as well as in medical imaging, computer science,
cosmology and numerical analysis. The spherical Slepian functions can be found
either by solving an algebraic eigenvalue problem in the spectral domain or by
solving a Fredholm integral equation in the spatial domain. The associated
eigenvalues are a measure of the spatiospectral concentration. When the
concentration region is an axisymmetric polar cap the spatiospectral projection
operator commutes with a Sturm-Liouville operator; this enables the
eigenfunctions to be computed extremely accurately and efficiently, even when
their area-bandwidth product, or Shannon number, is large. In the asymptotic
limit of a small concentration region and a large spherical harmonic bandwidth
the spherical concentration problem approaches its planar equivalent, which
exhibits self-similarity when the Shannon number is kept invariant.Comment: 48 pages, 17 figures. Submitted to SIAM Review, August 24th, 200
Discovery of an Isolated Population of \u3ci\u3eAnax Longipes\u3c/i\u3e in Michigan (Odonata: Aeshnidae)
Anax longipes is a large aeshnid dragonfly previously unknown from Michigan. Adults and larvae were found in abundance at a series of experimental ponds within the E.S. George Reserve in Livingston County, Michigan
Big-bang nucleosynthesis and gamma-ray constraints on cosmic strings with a large Higgs condensate
We consider constraints on cosmic strings from their emission of Higgs particles, in the case that the strings have a Higgs condensate with amplitude of order the string mass scale, assuming that a fraction of the energy of the condensate can be turned into radiation near cusps. The injection of energy by the decaying Higgs particles affects the light element abundances predicted by standard big-bang nucleosynthesis (BBN) and also contributes to the diffuse gamma-ray background (DGRB) in the Universe today. We examine the two main string scenarios (Nambu-Goto and field theory) and find that the primordial helium and deuterium abundances strongly constrain the string tension and the efficiency of the emission process in the NG scenario, while the strongest BBN constraint in the FT scenario comes from the deuterium abundance. The Fermi-LAT measurement of the DGRB constrains the field theory scenario even more strongly than previously estimated from EGRET data, requiring that the product of the string tension μ and Newton’s constant G is bounded by Gμ≲2.7×10−11β−2ft, where β2ft is the fraction of the strings’ energy going into Higgs particles
The contribution of multi-sensory aids to a meaningful art program.
Thesis (Ed.M.)--Boston Universit
Melt production in large-scale impact events: Implications and observations at terrestrial craters
The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base
- …