24 research outputs found

    Electrical properties and reactivity under air–CO flows of composite systems based on ceria coated carbon nanotubes

    Get PDF
    Nanocomposite systems of ceria nanoparticles and Double Walled Carbon Nanotubes (DWNTs) coated with nanoceria (nCeO2) were elaborated using a classical sol gel method. Three samples noted as [nCeO2 + xDWNTs] with variable weight fractions x = 0, 5 and 15 wt.% of DWNTs were obtained. The samples were characterized by Xray diffraction and electron microscopy. The electrical conductivity of [nCeO2 + xDWNTs] compacted pellets systems was determined from electrical impedance spectrometry, under air, between 120 and 400 °C. In this temperature range, all samples were semiconducting with a weak variation of activation energy. However, the conductivity strongly increased with the weight fraction of ceria coated carbon nanotubes. Finally, the solid–gas interactions between air–CO flows and these systems were studied as a function of time and temperature, by means of Fourier transform infrared (FTIR) spectroscopy. The oxidation kinetics of CO into CO2 was analyzed from the evolutions of FTIR absorption band intensities. As the carbon nanotube fraction x increased, the conversion efficiency was strongly improved

    Histone deacetylase inhibitors strongly sensitise neuroblastoma cells to TRAIL-induced apoptosis by a caspases-dependent increase of the pro- to anti-apoptotic proteins ratio

    Get PDF
    BACKGROUND: Neuroblastoma (NB) is the second most common solid childhood tumour, an aggressive disease for which new therapeutic strategies are strongly needed. Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) selectively induces apoptosis in most tumour cells, but not in normal tissues and therefore represents a valuable candidate in apoptosis-inducing therapies. Caspase-8 is silenced in a subset of highly malignant NB cells, which results in full TRAIL resistance. In addition, despite constitutive caspase-8 expression, or its possible restoration by different strategies, NB cells remain weakly sensitive to TRAIL indicating a need to develop strategies to sensitise NB cells to TRAIL. Histone deacetylase inhibitors (HDACIs) are a new class of anti-cancer agent inducing apoptosis or cell cycle arrest in tumour cells with very low toxicity toward normal cells. Although HDACIs were recently shown to increase death induced by TRAIL in weakly TRAIL-sensitive tumour cells, the precise involved sensitisation mechanisms have not been fully identified. METHODS: NB cell lines were treated with various doses of HDACIs and TRAIL, then cytotoxicity was analysed by MTS/PMS proliferation assays, apoptosis was measured by the Propidium staining method, caspases activity by colorimetric protease assays, and (in)activation of apoptotic proteins by immunoblotting. RESULTS: Sub-toxic doses of HDACIs strongly sensitised caspase-8 positive NB cell lines to TRAIL induced apoptosis in a caspases dependent manner. Combined treatments increased the activation of caspases and Bid, and the inactivation of the anti-apoptotic proteins XIAP, Bcl-x, RIP, and survivin, thereby increasing the pro- to anti-apoptotic protein ratio. It also enhanced the activation of the mitochondrial pathway. Interestingly, the kinetics of caspases activation and inactivation of anti-apoptotic proteins is accelerated by combined treatment with TRAIL and HDACIs compared to TRAIL alone. In contrast, cell surface expression of TRAIL-receptors or TRAIL is not affected by sub-toxic doses of HDACIs. CONCLUSION: HDACIs were shown to activate the mitochondrial pathway and to sensitise NB cells to TRAIL by enhancing the amplitude of the apoptotic cascade and by restoring an apoptosis-prone ratio of pro- to anti-apoptotic proteins. Combining HDACIs and TRAIL could therefore represent a weakly toxic and promising strategy to target TRAIL-resistant tumours such as neuroblastomas

    The Chemokine Receptor CXCR4 Strongly Promotes Neuroblastoma Primary Tumour and Metastatic Growth, but not Invasion

    Get PDF
    Neuroblastoma (NB) is a heterogeneous, and particularly malignant childhood neoplasm in its higher stages, with a propensity to form metastasis in selected organs, in particular liver and bone marrow, and for which there is still no efficient treatment available beyond surgery. Recent evidence indicates that the CXCR4/CXCL12 chemokine/receptor axis may be involved in promoting NB invasion and metastasis. In this study, we explored the potential role of CXCR4 in the malignant behaviour of NB, using a combination of in vitro functional analyses and in vivo growth and metastasis assessment in an orthotopic NB mouse model. We show here that CXCR4 overexpression in non-metastatic CXCR4-negative NB cells IGR-NB8 and in moderately metastatic, CXCR4 expressing NB cells IGR-N91, strongly increased tumour growth of primary tumours and liver metastases, without altering the frequency or the pattern of metastasis. Moreover shRNA-mediated knock-down experiments confirmed our observations by showing that silencing CXCR4 in NB cells impairs in vitro and almost abrogates in vivo growth. High levels of CXCL12 were detected in the mouse adrenal gland (the primary tumour site), and in the liver suggesting a paracrine effect of host-derived CXCL12 on NB growth. In conclusion, this study reveals a yet unreported NB-specific predominant growth and survival-promoting role of CXCR4, which warrants a critical reconsideration of the role of CXCR4 in the malignant behaviour of NB and other cancers

    Retrospective Evaluation of Progenitor Biological Bandage Use: A Complementary and Safe Therapeutic Management Option for Prevention of Hypertrophic Scarring in Pediatric Burn Care

    Get PDF
    Progenitor Biological Bandages (PBB) have been continuously applied clinically in the Lausanne Burn Center for over two decades. Vast translational experience and hindsight have been gathered, specifically for cutaneous healing promotion of donor-site grafts and second-degree pediatric burns. PBBs constitute combined Advanced Therapy Medicinal Products, containing viable cultured allogeneic fetal dermal progenitor fibroblasts. Such constructs may partly favor repair and regeneration of functional cutaneous tissues by releasing cytokines and growth factors, potentially negating the need for subsequent skin grafting, while reducing the formation of hypertrophic scar tissues. This retrospective case-control study (2010-2018) of pediatric second-degree burn patients comprehensively compared two initial wound treatment options (i.e., PBBs versus Aquacel <sup>®</sup> Ag, applied during ten to twelve days post-trauma). Results confirmed clinical safety of PBBs with regard to morbidity, mortality, and overall complications. No difference was detected between groups for length of hospitalization or initial relative burn surface decreasing rates. Nevertheless, a trend was observed in younger patients treated with PBBs, requiring fewer corrective interventions or subsequent skin grafting. Importantly, significant improvements were observed in the PBB group regarding hypertrophic scarring (i.e., reduced number of scar complications and related corrective interventions). Such results establish evidence of clinical benefits yielded by the Swiss fetal progenitor cell transplantation program and favor further implementation of specific cell therapies in highly specialized regenerative medicine

    Cutaneous Cell Therapy Manufacturing Timeframe Rationalization: Allogeneic Off-the-Freezer Fibroblasts for Dermo-Epidermal Combined Preparations (DE-FE002-SK2) in Burn Care

    No full text
    Autologous cell therapy manufacturing timeframes constitute bottlenecks in clinical management pathways of severe burn patients. While effective temporary wound coverings exist for high-TBSA burns, any means to shorten the time-to-treatment with cytotherapeutic skin grafts could provide substantial therapeutic benefits. This study aimed to establish proofs-of-concept for a novel combinational cytotherapeutic construct (autologous/allogeneic DE-FE002-SK2 full dermo-epidermal graft) designed for significant cutaneous cell therapy manufacturing timeframe rationalization. Process development was based on several decades (four for autologous protocols, three for allogeneic protocols) of in-house clinical experience in cutaneous cytotherapies. Clinical grade dermal progenitor fibroblasts (standardized FE002-SK2 cell source) were used as off-the-freezer substrates in novel autologous/allogeneic dermo-epidermal bilayer sheets. Under vitamin C stimulation, FE002-SK2 primary progenitor fibroblasts rapidly produced robust allogeneic dermal templates, allowing patient keratinocyte attachment in co-culture. Notably, FE002-SK2 primary progenitor fibroblasts significantly outperformed patient fibroblasts for collagen deposition. An ex vivo de-epidermalized dermis model was used to demonstrate the efficient DE-FE002-SK2 construct bio-adhesion properties. Importantly, the presented DE-FE002-SK2 manufacturing process decreased clinical lot production timeframes from 6–8 weeks (standard autologous combined cytotherapies) to 2–3 weeks. Overall, these findings bear the potential to significantly optimize burn patient clinical pathways (for rapid wound closure and enhanced tissue healing quality) by combining extensively clinically proven cutaneous cell-based technologies

    Retrospectives on Three Decades of Safe Clinical Experience with Allogeneic Dermal Progenitor Fibroblasts: High Versatility in Topical Cytotherapeutic Care

    No full text
    Allogeneic dermal progenitor fibroblasts constitute cytotherapeutic contenders for modern cutaneous regenerative medicine. Based on advancements in the relevant scientific, technical, and regulatory fields, translational developments have slowly yet steadily led to the clinical application of such biologicals and derivatives. To set the appropriate general context, the first aim of this study was to provide a current global overview of approved cell and gene therapy products, with an emphasis on cytotherapies for cutaneous application. Notable advances were shown for North America, Europe, Iran, Japan, and Korea. Then, the second and main aim of this study was to perform a retrospective analysis on the various applications of dermal progenitor fibroblasts and derivatives, as clinically used under the Swiss progenitor cell transplantation program for the past three decades. Therein, the focus was set on the extent and versatility of use of the therapies under consideration, their safety parameters, as well as formulation options for topical application. Quantitative and illustrative data were summarized and reported for over 300 patients treated with various cell-based or cell-derived preparations (e.g., progenitor biological bandages or semi-solid emulsions) in Lausanne since 1992. Overall, this study shows the strong current interest in biological-based approaches to cutaneous regenerative medicine from a global developmental perspective, as well as the consolidated local clinical experience gathered with a specific and safe allogeneic cytotherapeutic approach. Taken together, these current and historical elements may serve as tangible working bases for the further optimization of local and modern translational pathways for the provision of topical cytotherapeutic care

    Functional Sphere Profiling Reveals the Complexity of Neuroblastoma Tumor-Initiating Cell Model12

    Get PDF
    Neuroblastoma (NB) is a neural crest-derived childhood tumor characterized by a remarkable phenotypic diversity, ranging from spontaneous regression to fatal metastatic disease. Although the cancer stem cell (CSC) model provides a trail to characterize the cells responsible for tumor onset, the NB tumor-initiating cell (TIC) has not been identified. In this study, the relevance of the CSC model in NB was investigated by taking advantage of typical functional stem cell characteristics. A predictive association was established between self-renewal, as assessed by serial sphere formation, and clinical aggressiveness in primary tumors. Moreover, cell subsets gradually selected during serial sphere culture harbored increased in vivo tumorigenicity, only highlighted in an orthotopic microenvironment. A microarray time course analysis of serial spheres passages from metastatic cells allowed us to specifically “profile” the NB stem cell-like phenotype and to identify CD133, ABC transporter, and WNT and NOTCH genes as spheres markers. On the basis of combined sphere markers expression, at least two distinct tumorigenic cell subpopulations were identified, also shown to preexist in primary NB. However, sphere markers-mediated cell sorting of parental tumor failed to recapitulate the TIC phenotype in the orthotopic model, highlighting the complexity of the CSC model. Our data support the NB stem-like cells as a dynamic and heterogeneous cell population strongly dependent on microenvironmental signals and add novel candidate genes as potential therapeutic targets in the control of high-risk NB

    Transcriptome of a mouse kidney cortical collecting duct cell line: Effects of aldosterone and vasopressin

    No full text
    Aldosterone and vasopressin are responsible for the final adjustment of sodium and water reabsorption in the kidney. In principal cells of the kidney cortical collecting duct (CCD), the integral response to aldosterone and the long-term functional effects of vasopressin depend on transcription. In this study, we analyzed the transcriptome of a highly differentiated mouse clonal CCD principal cell line (mpkCCD(cl4)) and the changes in the transcriptome induced by aldosterone and vasopressin. Serial analysis of gene expression (SAGE) was performed on untreated cells and on cells treated with either aldosterone or vasopressin for 4 h. The transcriptomes in these three experimental conditions were determined by sequencing 169,721 transcript tags from the corresponding SAGE libraries. Limiting the analysis to tags that occurred twice or more in the data set, 14,654 different transcripts were identified, 3,642 of which do not match known mouse sequences. Statistical comparison (at P < 0.05 level) of the three SAGE libraries revealed 34 AITs (aldosterone-induced transcripts), 29 ARTs (aldosterone-repressed transcripts), 48 VITs (vasopressin-induced transcripts) and 11 VRTs (vasopressin-repressed transcripts). A selection of the differentially-expressed, hormone-specific transcripts (5 VITs, 2 AITs and 1 ART) has been validated in the mpkCCD(cl4) cell line either by Northern blot hybridization or reverse transcription–PCR. The hepatocyte nuclear transcription factor HNF-3-α (VIT39), the receptor activity modifying protein RAMP3 (VIT48), and the glucocorticoid-induced leucine zipper protein (GILZ) (AIT28) are candidate proteins playing a role in physiological responses of this cell line to vasopressin and aldosterone
    corecore