4 research outputs found

    Neuro-musculoskeletal simulation of instrumented contracture and spasticity assessment in children with cerebral palsy

    No full text
    Background: Increased resistance in muscles and joints is an important phenomenon in patients with cerebral palsy (CP), and is caused by a combination of neural (e.g. spasticity) and non-neural (e.g. contracture) components. The aim of this study was to simulate instrumented, clinical assessment of the hamstring muscles in CP using a conceptual model of contracture and spasticity, and to determine to what extent contracture can be explained by altered passive muscle stiffness, and spasticity by (purely) velocity-dependent stretch reflex. Methods: Instrumented hamstrings spasticity assessment was performed on 11 children with CP and 9 typically developing children. In this test, the knee was passively stretched at slow and fast speed, and knee angle, applied forces and EMG were measured. A dedicated OpenSim model was created with motion and muscles around the knee only. Contracture was modeled by optimizing the passive muscle stiffness parameters of vasti and hamstrings, based on slow stretch data. Spasticity was modeled using a velocity-dependent feedback controller, with threshold values derived from experimental data and gain values optimized for individual subjects. Forward dynamic simulations were performed to predict muscle behavior during slow and fast passive stretches. Results: Both slow and fast stretch data could be successfully simulated by including subject-specific levels of contracture and, for CP fast stretches, spasticity. The RMS errors of predicted knee motion in CP were 1.1 +/- 0.9 degrees for slow and 5.9 +/- 2.1 degrees for fast stretches. CP hamstrings were found to be stiffer compared with TD, and both hamstrings and vasti were more compliant than the original generic model, except for the CP hamstrings. The purely velocity-dependent spasticity model could predict response during fast passive stretch in terms of predicted knee angle, muscle activity, and fiber length and velocity. Only sustained muscle activity, independent of velocity, was not predicted by our model. Conclusion: The presented individually tunable, conceptual model for contracture and spasticity could explain most of the hamstring muscle behavior during slow and fast passive stretch. Future research should attempt to apply the model to study the effects of spasticity and contracture during dynamic tasks such as gait

    How normal is normal: Consequences of stride to stride variability, treadmill walking and age when using normative paediatric gait data

    No full text
    Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro

    European consensus on the concepts and measurement of the pathophysiological neuromuscular responses to passive muscle stretch

    No full text
    Background and purpose To support clinical decision-making in central neurological disorders, a physical examination is used to assess responses to passive muscle stretch. However, what exactly is being assessed is expressed and interpreted in different ways. A clear diagnostic framework is lacking. Therefore, the aim was to arrive at unambiguous terminology about the concepts and measurement around pathophysiological neuromuscular response to passive muscle stretch. Methods During two consensus meetings, 37 experts from 12 European countries filled online questionnaires based on a Delphi approach, followed by plenary discussion after rounds. Consensus was reached for agreement ≥75%. Results The term hyper-resistance should be used to describe the phenomenon of impaired neuromuscular response during passive stretch, instead of for example ‘spasticity’ or ‘hypertonia’. From there, it is essential to distinguish non-neural (tissue-related) from neural (central nervous system related) contributions to hyper-resistance. Tissue contributions are elasticity, viscosity and muscle shortening. Neural contributions are velocity dependent stretch hyperreflexia and non-velocity dependent involuntary background activation. The term ‘spasticity’ should only be used next to stretch hyperreflexia, and ‘stiffness’ next to passive tissue contributions. When joint angle, moment and electromyography are recorded, components of hyper-resistance within the framework can be quantitatively assessed. Conclusions A conceptual framework of pathophysiological responses to passive muscle stretch is defined. This framework can be used in clinical assessment of hyper-resistance and will improve communication between clinicians. Components within the framework are defined by objective parameters from instrumented assessment. These parameters need experimental validation in order to develop treatment algorithms based on the aetiology of the clinical phenomena
    corecore