13 research outputs found

    Endoscopic treatment of vesicoureteral reflux using calcium hydroxyl apatite in dogs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Injection of biomaterial to suburetral region, using minimally invasive procedure, has become an interesting topic for urologists to treat vesicoureteral reflux. The objective of this study was to evaluate the feasibility of injecting newly introduced calcium hydroxyl apatite to suburetral region, for treating an experimentally induced vesicoureteral reflux in dogs.</p> <p>Findings</p> <p>Bilateral vesicoureteral refluxed (VUR) mixed breed dogs (n = 12; 10-15 kg live weight, 3-6 months of age) were selected for this study. The presence and grade of the reflux were determined using cystography. Accordingly, 6 dogs displayed grade 1 & 2 and the other 6 showed grade 3 & 4 bilateral VUR. Every single dog, with bilateral VUR, underwent endoscopic treatment and received an injection of calcium hydroxyl apatite (an Iranian made product) into the left (treated side) and an injection of the similar volume of normal saline in to the right (control side) subureteric space. One week, 3 and 6 months after treatment, cystography was performed. On each occasion, 4 dogs were euthanized by gas inhalation and biopsy samples were collected for histopathological study from ureter, bladder, kidney, lung and spleen in order to investigate the biomaterial migration into different organs. Data were analyzed using Chi-squared test. In control sides, radiographs confirmed the same grade of VUR, found at the initiation of the study. VUR was resolved in 100% (6/6) of Grade 1 & 2 and 83.33% (5/6) of Grade 3 & 4 in treated side. Therefore, the total success rate of this study was 91.67% (11/12). Macroscopic examination of the vesicouretral region of the treated side revealed a firm and consistent biomaterial mass at the site of injection. Histological findings confirmed inflammation at treated side. In contrast, there was no tissue reaction on control side. There was no evidence for biomaterial migration in macroscopic and microscopic observations in this study.</p> <p>Conclusion</p> <p>In the present study, a new biocompatible material produced a firm, consist and sustainable biomaterial mass in the suburetral region for treating vesicouretral reflux without any evidence of biomaterial migration.</p

    ACUTE THROMBOSIS OF SUBCLAVIAN ARTERY:A CASE REPORT

    No full text
    Abstract&nbsp;&nbsp; INTRODUCTION: Subclavian artery thrombosis is a condition in which the blood flow through the vessel is suddenly obstructed. In fact, occlusion occurs in one of subclavian arteries, especially in the left subclavian artery. A patient with an acute occlusion presents with a cold, painful, cyanosis, pulseless upper extremity.&nbsp;&nbsp; CASE REPORT: A 48 years old lady admitted to Imam Khomeyni hospital (Sari, Iran) with a history of acute left upper limb pain. On examination, her left hand was cold, blue and painful on active and passive movements. Her left axilliary pulse was detected with no brachial or ulnar pulses. Left subclavian angiography showed a large thrombus in the proximal part of her left subclavian artery, the other sites of artery were normal. She had an elbow amputation in Tehran later.&nbsp;&nbsp; CONCLUSION: Therapeutic intervention is indicated in any symptomatic patient. Rapid diagnosis and treatment of thrombosis of subclavian artery prevent ischemia and gangrene of upper extremity. Subclavian artery thrombosis is uncommon cause of acute upper extremity ischemia, but should always regard to it. A true history and physical exam could be established rapid diagnosis and prevented side effects such as gangrene and amputation of upper extremity.&nbsp;&nbsp;Keywords: Acute thrombosis of Subclavian artery, Ischemia of upper extremity.</p

    Impact of Chromium Oxide Nanoparticles on Growth and Biofilm Formation of Persistence Klebsiella pneumoniae Isolates

    No full text
    Bacterial persistence is recognized as a major cause of antibiotic therapy failure, causing biofilms and chronic intractable infections. The emergence of persisters in K. pneumoniae isolates has become a worldwide public health concern. Despite this clinical threat, currently, there are no viable means for eradicating K. pneumoniae persisters. In this project, chromium oxide (Cr2O3) nanoparticles were synthesized by the photochemical method. The morphology, topographic and physical properties of nano-synthesized were described by transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray powder diffraction (XRD), and ultraviolet-visible spectroscopy (UV. vis) measurements. The obtained average size of Cr2O3-NPs was to be ranging from 11 to 30 nm. The activities of the Cr2O3-NPs for antibacterial and antibiofilm formation against persistent K. pneumoniae were assessed. The result showed a significant inhibitory effect of Cr2O3-NPs against K. pneumoniae. A, where the zones of inhibition were 12-18 mm, and the minimum inhibitory concentration (MIC) was 625 μg/mL. The concentration of Cr2O3-NPs of 10 mg/mL demonstrated the highest inhibition activity against biofilm formation (73.95 ± 2.17%), indicating the lowest inhibition (19.08 ± 1.32%) at a level of 0.625 mg/mL. Cr2O3-NPs therefore had a positive impact on biofilms that were produced by persistence isolates of K. pneumoniae

    Computational modeling of drug separation from aqueous solutions using octanol organic solution in membranes

    Get PDF
    Continuous membrane separation of pharmaceuticals from an aqueous feed was studied theoretically by development of high-performance mechanistic model. The model was developed based on mass and momentum transfer to predict separation and removal of ibuprofen (IP) and its metabolite compound, i.e. 4-isobutylacetophenone (4-IBAP) from aqueous solution. The modeling study was carried out for a membrane contactor considering mass transport of solute from feed to organic solvent (octanol solution). The solute experiences different mass transfer resistances during the removal in membrane system which were all taken into account in the modeling. The model’s equations were solved using computational fluid dynamic technique, and the simulations were carried out to understand the effect of process parameters, flow pattern, and membrane properties on the removal of both solutes. The simulation results indicated that IP and 4-IBAP can be effectively removed from aqueous feed by adjusting the process parameters and flow pattern. More removal was obtained when the feed flows in the shell side of membrane system due to improving mass transfer. Also, feed flow rate was indicated to be the most affecting process parameter, and the highest solute removal was obtained at the lowest feed flow rate

    Molecular separation of ibuprofen and 4-isobutylacetophenone using octanol organic solution by porous polymeric membranes

    Get PDF
    Molecular separation of pharmaceutical contaminants from water has been recently of great interest to alleviate their detrimental impacts on environment and human well-being. As the novelty, this investigation aims to develop a mechanistic modeling approach and consequently its related CFD-based simulations to evaluate the molecular separation efficiency of ibuprofen (IP) and its metabolite 4-isobutylacetophenone (4-IBAP) from water inside a porous membrane contactor (PMC). For this purpose, octanol has been applied as an organic phase to extract IP and 4-IBAP from the aqueous solution due to high solubility of solutes in octanol. Finite element (FE) technique is used as a promising tool to simultaneously solve continuity and Navier-Stokes equations and their associated boundary conditions in tube, shell and porous membrane compartments of the PMC. The results demonstrated that the application of PMC and liquid-liquid extraction process can be significantly effective due to separating 51 and 54% of inlet IP and 4-IBAP molecules from aqueous solution, respectively. Moreover, the impact of various operational / functional parameters such as packing density, the number of fibrous membrane, the module length, the membrane porosity / tortuosity, and ultimately the aqueous solution flow rate on the molecular separation efficiency of IP and 4-IBAP is studied in more detail

    Synthesis of multi-application activated carbon from oak seeds by KOH activation for methylene blue adsorption and electrochemical supercapacitor electrode

    Get PDF
    In the current study, an oak as a non-expensive, renewable, and a biomass resource was used to generate a nano-porous activated carbon applicable in methylene blue adsorption from wastewater and energy storage equipment. Furnace activation in the temperature range of 450, 550, 650 and 750 C was used for activated carbon synthesis after infusion with potassium hydroxide. The synthesized activated carbon was characterized using different techniques including nitrogen adsorption/desorption, scanning electron microscopy, and fourier-transform infrared spectroscopy. The results showed that temperature has significant effect on activated carbon efficiency. Specific surface and pore volumes increased with the enhancement of temperature until 650 C, but then it was decreased. Pores volume was consisting of mesoporous and microporous structure. The highest surface area (2896 m2 /g) and pores volume (1.554 cm3 /g) was obtained for the sample prepared at 650 C. Freundlich isotherm model is appropriate for methylene blue adsorption isotherm by the synthesized activated carbon. The maximum adsorption capacity of MB was obtained as 24 mg/g. Moreover, the synthesized activated carbon exhibited the highest specific capacitance when it was used as electrode (551 F/g at current density of 1 A/g) in 1 M sulphuric acid electrolyte and 96% specific capacitance was remained after 5000 charge-discharge cycles at a current density of 10 A/g

    The burden of metabolic risk factors in North Africa and the Middle East, 1990–2019: findings from the Global Burden of Disease StudyResearch in context

    No full text
    Summary: Background: The objective of this study is to investigate the trends of exposure and burden attributable to the four main metabolic risk factors, including high systolic blood pressure (SBP), high fasting plasma glucose (FPG), high body-mass index (BMI), and high low-density lipoproteins cholesterol (LDL) in North Africa and the Middle East from 1990 to 2019. Methods: The data were retrieved from Global Burden of Disease Study 2019. Summary exposure value (SEV) was used for risk factor exposure. Burden attributable to each risk factor was incorporated in the population attributable fraction to estimate the total attributable deaths and disability-adjusted life-years (DALYs). Findings: While age-standardized death rate (ASDR) attributable to high-LDL and high-SBP decreased by 26.5% (18.6–35.2) and 23.4% (15.9–31.5) over 1990–2019, respectively, high-BMI with 5.1% (−9.0–25.9) and high-FPG with 21.4% (7.0–37.4) change, grew in ASDR. Moreover, age-standardized DALY rate attributed to high-LDL and high-SBP declined by 30.2% (20.9–39.0) and 25.2% (16.8–33.9), respectively. The attributable age-standardized DALY rate of high-BMI with 8.3% (−6.5–28.8) and high-FPG with 27.0% (14.3–40.8) increase, had a growing trend. Age-standardized SEVs of high-FPG, high-BMI, high-SBP, and high-LDL increased by 92.4% (82.8–103.3), 76.0% (58.9–99.3), 10.4% (3.8–18.0), and 5.5% (4.3–7.1), respectively. Interpretation: The burden attributed to high-SBP and high-LDL decreased during the 1990–2019 period in the region, while the attributable burden of high-FPG and high-BMI increased. Alarmingly, exposure to all four risk factors increased in the past three decades. There has been significant heterogeneity among the countries in the region regarding the trends of exposure and attributable burden. Urgent action is required at the individual, community, and national levels in terms of introducing effective strategies for prevention and treatment that account for local and socioeconomic factors. Funding: Bill &amp; Melinda Gates Foundation

    Burden of disease scenarios for 204 countries and territories, 2022–2050: a forecasting analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundFuture trends in disease burden and drivers of health are of great interest to policy makers and the public at large. This information can be used for policy and long-term health investment, planning, and prioritisation. We have expanded and improved upon previous forecasts produced as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) and provide a reference forecast (the most likely future), and alternative scenarios assessing disease burden trajectories if selected sets of risk factors were eliminated from current levels by 2050.MethodsUsing forecasts of major drivers of health such as the Socio-demographic Index (SDI; a composite measure of lag-distributed income per capita, mean years of education, and total fertility under 25 years of age) and the full set of risk factor exposures captured by GBD, we provide cause-specific forecasts of mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) by age and sex from 2022 to 2050 for 204 countries and territories, 21 GBD regions, seven super-regions, and the world. All analyses were done at the cause-specific level so that only risk factors deemed causal by the GBD comparative risk assessment influenced future trajectories of mortality for each disease. Cause-specific mortality was modelled using mixed-effects models with SDI and time as the main covariates, and the combined impact of causal risk factors as an offset in the model. At the all-cause mortality level, we captured unexplained variation by modelling residuals with an autoregressive integrated moving average model with drift attenuation. These all-cause forecasts constrained the cause-specific forecasts at successively deeper levels of the GBD cause hierarchy using cascading mortality models, thus ensuring a robust estimate of cause-specific mortality. For non-fatal measures (eg, low back pain), incidence and prevalence were forecasted from mixed-effects models with SDI as the main covariate, and YLDs were computed from the resulting prevalence forecasts and average disability weights from GBD. Alternative future scenarios were constructed by replacing appropriate reference trajectories for risk factors with hypothetical trajectories of gradual elimination of risk factor exposure from current levels to 2050. The scenarios were constructed from various sets of risk factors: environmental risks (Safer Environment scenario), risks associated with communicable, maternal, neonatal, and nutritional diseases (CMNNs; Improved Childhood Nutrition and Vaccination scenario), risks associated with major non-communicable diseases (NCDs; Improved Behavioural and Metabolic Risks scenario), and the combined effects of these three scenarios. Using the Shared Socioeconomic Pathways climate scenarios SSP2-4.5 as reference and SSP1-1.9 as an optimistic alternative in the Safer Environment scenario, we accounted for climate change impact on health by using the most recent Intergovernmental Panel on Climate Change temperature forecasts and published trajectories of ambient air pollution for the same two scenarios. Life expectancy and healthy life expectancy were computed using standard methods. The forecasting framework includes computing the age-sex-specific future population for each location and separately for each scenario. 95% uncertainty intervals (UIs) for each individual future estimate were derived from the 2·5th and 97·5th percentiles of distributions generated from propagating 500 draws through the multistage computational pipeline.FindingsIn the reference scenario forecast, global and super-regional life expectancy increased from 2022 to 2050, but improvement was at a slower pace than in the three decades preceding the COVID-19 pandemic (beginning in 2020). Gains in future life expectancy were forecasted to be greatest in super-regions with comparatively low life expectancies (such as sub-Saharan Africa) compared with super-regions with higher life expectancies (such as the high-income super-region), leading to a trend towards convergence in life expectancy across locations between now and 2050. At the super-region level, forecasted healthy life expectancy patterns were similar to those of life expectancies. Forecasts for the reference scenario found that health will improve in the coming decades, with all-cause age-standardised DALY rates decreasing in every GBD super-region. The total DALY burden measured in counts, however, will increase in every super-region, largely a function of population ageing and growth. We also forecasted that both DALY counts and age-standardised DALY rates will continue to shift from CMNNs to NCDs, with the most pronounced shifts occurring in sub-Saharan Africa (60·1% [95% UI 56·8–63·1] of DALYs were from CMNNs in 2022 compared with 35·8% [31·0–45·0] in 2050) and south Asia (31·7% [29·2–34·1] to 15·5% [13·7–17·5]). This shift is reflected in the leading global causes of DALYs, with the top four causes in 2050 being ischaemic heart disease, stroke, diabetes, and chronic obstructive pulmonary disease, compared with 2022, with ischaemic heart disease, neonatal disorders, stroke, and lower respiratory infections at the top. The global proportion of DALYs due to YLDs likewise increased from 33·8% (27·4–40·3) to 41·1% (33·9–48·1) from 2022 to 2050, demonstrating an important shift in overall disease burden towards morbidity and away from premature death. The largest shift of this kind was forecasted for sub-Saharan Africa, from 20·1% (15·6–25·3) of DALYs due to YLDs in 2022 to 35·6% (26·5–43·0) in 2050. In the assessment of alternative future scenarios, the combined effects of the scenarios (Safer Environment, Improved Childhood Nutrition and Vaccination, and Improved Behavioural and Metabolic Risks scenarios) demonstrated an important decrease in the global burden of DALYs in 2050 of 15·4% (13·5–17·5) compared with the reference scenario, with decreases across super-regions ranging from 10·4% (9·7–11·3) in the high-income super-region to 23·9% (20·7–27·3) in north Africa and the Middle East. The Safer Environment scenario had its largest decrease in sub-Saharan Africa (5·2% [3·5–6·8]), the Improved Behavioural and Metabolic Risks scenario in north Africa and the Middle East (23·2% [20·2–26·5]), and the Improved Nutrition and Vaccination scenario in sub-Saharan Africa (2·0% [–0·6 to 3·6]).InterpretationGlobally, life expectancy and age-standardised disease burden were forecasted to improve between 2022 and 2050, with the majority of the burden continuing to shift from CMNNs to NCDs. That said, continued progress on reducing the CMNN disease burden will be dependent on maintaining investment in and policy emphasis on CMNN disease prevention and treatment. Mostly due to growth and ageing of populations, the number of deaths and DALYs due to all causes combined will generally increase. By constructing alternative future scenarios wherein certain risk exposures are eliminated by 2050, we have shown that opportunities exist to substantially improve health outcomes in the future through concerted efforts to prevent exposure to well established risk factors and to expand access to key health interventions.FundingBill & Melinda Gates Foundation.</p
    corecore