96 research outputs found

    O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis

    Get PDF
    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. coli K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.</p

    Association of Early Beta-amyloid Accumulation and Neuroinflammation Measured with [11C]PBR28 in Elderly Individuals Without Dementia

    Get PDF
    OBJECTIVE: To examine whether early β-amyloid (Aβ) accumulation and metabolic risk factors are associated with neuroinflammation in elderly individuals without dementia. METHODS: We examined 54 volunteers (mean age 70.0, 56% women, 51% APOE ε4 carriers) with a TSPO-tracer [11C]PBR28 to assess neuroinflammation and with [11C]Pittsburgh compound B (PiB) to assess cerebral Aβ accumulation. [11C]PBR28 and [11C]PiB standardized uptake value ratios (SUVRs) were quantified in six regions of interests by using the cerebellar cortex as a pseudo-reference/reference region, respectively. Fasting venous glucose, insulin, and high sensitivity C-reactive protein (hs-CRP) values were determined. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated. A subset of individuals (n=11) underwent CSF sampling, and Aβ40, Aβ42, total-tau, phospho-tau, soluble TREM2 and YKL-40 levels were measured. RESULTS: Among the whole study group, no significant association was found between [11C]PiB and [11C]PBR28 SUVR composite scores (slope 0.02, p=0.30). However, higher [11C]PiB binding was associated with higher [11C]PBR28 binding among amyloid negative ([11C]PiB composite score ≤1.5) (TSPO-genotype, age and sex adjusted slope 0.26, p=0.008) but not among amyloid positive participants (slope: -0.004, p=0.88). Higher CSF sTREM2 (rs 0.72, p=0.01) and YKL-40 (rs=0.63, p=0.04) concentrations were associated with a higher [11C]PBR28 composite score. Higher body mass index, HOMA-IR, and hs-CRP were associated with higher [11C]PBR28 binding in brain regions where Aβ accumulation is first detected in Alzheimer's disease (AD). CONCLUSIONS: While there was no association between amyloid and neuroinflammation in the overall study group, neuroinflammation was associated with amyloid among the subgroup at early stages of amyloid pathology

    Radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate for PET imaging of folate receptor β-positive macrophages

    Get PDF
    Folate receptor β (FR-β), a marker expressed on macrophages, is a promising target for imaging of inflammation. Here, we report the radiosynthesis and preclinical evaluation of [68Ga]Ga-NOTA-folate (68Ga-FOL). After determining the affinity of 68Ga-FOL using cells expressing FR-β, we studied atherosclerotic mice with 68Ga-FOL and 18F-FDG PET/CT. In addition, we studied tracer distribution and co-localization with macrophages in aorta cryosections using autoradiography, histology, and immunostaining. The specificity of 68Ga-FOL was assessed in a blocking study with folate glucosamine. As a final step, human radiation doses were extrapolated from rat PET data. We were able to produce 68Ga-FOL with high radiochemical purity and moderate molar activity. Cell binding studies revealed that 68Ga-FOL had 5.1 nM affinity for FR-β. Myocardial uptake of 68Ga-FOL was 20-fold lower than that of 18F-FDG. Autoradiography and immunohistochemistry of the aorta revealed that 68Ga-FOL radioactivity co-localized with Mac-3–positive macrophage-rich atherosclerotic plaques. The plaque-to-healthy vessel wall ratio of 68Ga-FOL was significantly higher than that of 18F-FDG. Blocking studies verified that 68Ga-FOL was specific for FR. Based on estimations from rat data, the human effective dose was 0.0105 mSv/MBq. Together, these findings show that 68Ga-FOL represents a promising new FR-β–targeted tracer for imaging macrophage-associated inflammation.</p

    Maternal VDR variants rather than 25-hydroxyvitamin D concentration during early pregnancy are associated with type 1 diabetes in the offspring

    Get PDF
    This study was supported by the Finnish Academy (grant 127219), the European Foundation for the Study of Diabetes, the Novo Nordisk Foundation, the Diabetes Research Foundation, the EVO funding of the South Ostrobothnia Central Hospital from the Ministry ofHealthand SocialAffairs (EVO1107), the BiomedicumHelsinki Foun- dation, the Jalmari and Rauha Ahokas Foundation, the Yrjö Jahnsson Foundation, the Suoma Loimaranta-Airila Fund, the Onni and Hilja Tuovinen Foundation and the Juho Vainio Foundation

    Aluminum fluoride-18 labeled folate enables in vivo detection of atherosclerotic plaque inflammation by positron emission tomography

    Get PDF
    Inflammation plays an important role in the development of atherosclerosis and its complications. Because the folate receptor beta (FR-beta) is selectively expressed on macrophages, an FR targeted imaging agent could be useful for assessment of atherosclerotic inflammation. We investigated aluminum fluoride-18-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid conjugated folate (F-18-FOL) for the detection of atherosclerotic plaque inflammation. We studied atherosclerotic plaques in mice, rabbits, and human tissue samples using F-18-FOL positron emission tomography/computed tomography (PET/CT). Compound 2-deoxy-2-[F-18]fluoro-D-glucose (F-1(8)-FDG) was used as a comparison. Firstly, we found that the in vitro binding of F-18-FOL co-localized with FR-beta-positive macrophages in carotid endarterectomy samples from patients with recent ischemic symptoms. We then demonstrated specific accumulation of intravenously administered F-18-FOL in atherosclerotic plaques in mice and rabbits using PET/CT. We noticed that the F-18-FOL uptake correlated with the density of macrophages in plaques and provided a target-to-background ratio as high as F-18-FDG, but with considerably lower myocardial uptake. Thus, F-18-FOL PET/CT targeting of FR-beta-positive macrophages presents a promising new tool for the in vivo imaging of atherosclerotic inflammation

    Fast growth associated with aberrant vasculature and hypoxia in fibroblast growth factor 8b (FGF8b) over-expressing PC-3 prostate tumour xenografts

    Get PDF
    Background: Prostate tumours are commonly poorly oxygenated which is associated with tumour progression and development of resistance to chemotherapeutic drugs and radiotherapy. Fibroblast growth factor 8b (FGF8b) is a mitogenic and angiogenic factor, which is expressed at an increased level in human prostate tumours and is associated with a poor prognosis. We studied the effect of FGF8b on tumour oxygenation and growth parameters in xenografts in comparison with vascular endothelial growth factor (VEGF)-expressing xenografts, representing another fast growing and angiogenic tumour model. Methods: Subcutaneous tumours of PC-3 cells transfected with FGF8b, VEGF or empty (mock) vectors were produced and studied for vascularity, cell proliferation, glucose metabolism and oxygenation. Tumours were evaluated by immunohistochemistry (IHC), flow cytometry, use of radiolabelled markers of energy metabolism ([F-18] FDG) and hypoxia ([F-18] EF5), and intratumoral polarographic measurements of pO(2). Results: Both FGF8b and VEGF tumours grew rapidly in nude mice and showed highly vascularised morphology. Perfusion studies, pO(2) measurements, [F-18] EF5 and [F-18] FDG uptake as well as IHC staining for glucose transport protein (GLUT1) and hypoxia inducible factor (HIF) 1 showed that VEGF xenografts were well-perfused and oxygenised, as expected, whereas FGF8b tumours were as hypoxic as mock tumours. These results suggest that FGF8b-induced tumour capillaries are defective. Nevertheless, the growth rate of hypoxic FGF8b tumours was highly increased, as that of well-oxygenised VEGF tumours, when compared with hypoxic mock tumour controls. Conclusion: FGF8b is able to induce fast growth in strongly hypoxic tumour microenvironment whereas VEGF-stimulated growth advantage is associated with improved perfusion and oxygenation of prostate tumour xenografts
    corecore