22 research outputs found

    Electron transfer properties of NADH: Ubiquinone reductase in the ND1/3460 and the ND4/11778 mutations of the Leber hereditary optic neuroretinopathy (LHON)

    Get PDF
    AbstractWe report the electron transfer properties of the NADH: ubiquinone oxidoreductase complex of the respiratory chain (Complex I) in mitochondria of cells derived from LHON patients with two different mutations in mitochondrial DNA (mtDNA). The mutations occur in the mtDNA genes coding for the ND1 and ND4 subunits of Complex I. TheNDI/3460 mutation exhibits 80% reduction in rotenone-sensitive and ubiquinone-dependent electron transfer activity, whereas the proximal NADH dehydrogenase activity of the Complex is unaffected. This is in accordance with the proposal that the ND1 subunit interacts with rotenone and ubiquinone. In contrast, theND4/11778 mutation had no effect on electron transfer activity of the Complex in inner mitochondrial membrane preparations: alsoKm for NADH and NADH dehydrogenase activity were unaffected. However, in isolated mitochondria with theND4 mutation, the rate of oxidation of NAD-linked substrates, but not of succinate, was significantly decreased. This suggests that the ND4 subunit might be involved in specific aggregation of NADH-dependent dehydrogenases and Complex I, which may result in fast (‘solid state’) electron transfer from the former to the latter

    A Rare Mitochondrial DNA Haplotype Observed in Koreans

    No full text
    The haplogroup affiliations of Korean mitochondrial DNAs (mtDNAs) were determined by restriction analysis. Out of the 101 mtDNAs analyzed, 91 (90%) belonged to Asian-specific haplogroups M, C, D, G, A, B, and F. Haplogroup E was not detected among the Korean mtDNAs. Three mtDNAs represented an unusual mtDNA haplotype characterized by simultaneous presence of E and G haplogroup-specific polymorphisms. To characterize this haplotype in more detail, we sequenced the hypervariable segment I (HVSI) from these mtDNAs as well as from those from selected individuals representing each haplogroup. Sequence data were further used to compare Korean mtDNAs with mtDNAs from other Asian populations. The observed rare haplotype was also found among Japanese, which suggests that it is one of the ancestral lineages originally peopling Japan
    corecore