24 research outputs found

    Needs, trends, and advances in scintillators for radiographic imaging and tomography

    Full text link
    Scintillators are important materials for radiographic imaging and tomography (RadIT), when ionizing radiations are used to reveal internal structures of materials. Since its invention by R\"ontgen, RadIT now come in many modalities such as absorption-based X-ray radiography, phase contrast X-ray imaging, coherent X-ray diffractive imaging, high-energy X- and γ\gamma-ray radiography at above 1 MeV, X-ray computed tomography (CT), proton imaging and tomography (IT), neutron IT, positron emission tomography (PET), high-energy electron radiography, muon tomography, etc. Spatial, temporal resolution, sensitivity, and radiation hardness, among others, are common metrics for RadIT performance, which are enabled by, in addition to scintillators, advances in high-luminosity accelerators and high-power lasers, photodetectors especially CMOS pixelated sensor arrays, and lately data science. Medical imaging, nondestructive testing, nuclear safety and safeguards are traditional RadIT applications. Examples of growing or emerging applications include space, additive manufacturing, machine vision, and virtual reality or `metaverse'. Scintillator metrics such as light yield and decay time are correlated to RadIT metrics. More than 160 kinds of scintillators and applications are presented during the SCINT22 conference. New trends include inorganic and organic scintillator heterostructures, liquid phase synthesis of perovskites and μ\mum-thick films, use of multiphysics models and data science to guide scintillator development, structural innovations such as photonic crystals, nanoscintillators enhanced by the Purcell effect, novel scintillator fibers, and multilayer configurations. Opportunities exist through optimization of RadIT with reduced radiation dose, data-driven measurements, photon/particle counting and tracking methods supplementing time-integrated measurements, and multimodal RadIT.Comment: 45 pages, 43 Figures, SCINT22 conference overvie

    Crystal Growth and Phase Formation of High-Entropy Rare-Earth Aluminum Perovskites

    No full text
    We demonstrate for the first time the crystal growth of high-entropy rare-earth (RE) aluminum perovskites (REAlO3) using the micro-pulling-down method to inform future exploration of functional crystals. To determine how composition affects phase formation, we formulate equiatomic compositions containing five REs from the following list: Lu, Yb, Tm, Er, Y, Ho, Dy, Tb, Gd, Eu, Sm, Nd, Pr, Ce, La. To test whether combinations of REs with similar ionic radii may favor a single phase, compositions containing REs with consecutive or nonconsecutive ionic radius values were formulated. Powder and single-crystal X-ray diffraction indicate that crystals containing only REs with similar ionic radii that form orthorhombic single-RE REAlO3 are a single phase. Crystals containing REs with dissimilar ionic radii or mixtures of REs that form orthorhombic, rhombohedral, and tetragonal single-RE REAlO3 are a mixture of phases. The elemental distribution in single-phase crystals analyzed via electron probe microanalysis confirms no evidence of preferential incorporation of any of the constituent REs. The distribution and composition of secondary phases were analyzed via scanning electron microscopy and energy dispersive spectroscopy; secondary phases were seen as a small region in the center of the crystals with branching features closer to the outer surface

    Conference Comments

    No full text
    The 16th International Conference on Inorganic Scintillators and their Applications (SCINT 2022) was organized by the Los Alamos National Laboratory, and held in Santa Fe, NM, USA, from September 19 to October 23, 2022. More than 200 colleagues from nearly 20 different countries finally participated in the conference. The program consisted of five invited and ten keynote lectures, and 74 oral and 46 poster contributions. A special memorial session was devoted to Prof. Richard T. Williams. Extended exhibition with altogether about ten exhibitor stands provided another link to the market applications behind the research. An intense and structured research and development in the field of scintillators was represented by 15 sessions oriented toward various material technologies including nanomaterials, metamaterials, and classical bulk single crystals and optical ceramics. Their characterization, modeling, and underlying physical mechanisms description constituted the subject of a major part of conference contributions. Finally, various applications of inorganic scintillators were presented and discussed
    corecore