19 research outputs found

    Spectroscopic perspective on the interplay between electronic and magnetic properties of magnetically doped topological insulators

    Get PDF
    We combine low energy muon spin rotation (LE-μ\muSR) and soft-X-ray angle-resolved photoemission spectroscopy (SX-ARPES) to study the magnetic and electronic properties of magnetically doped topological insulators, (Bi,Sb)2_2Te3_3. We find that one achieves a full magnetic volume fraction in samples of (V/Cr)x_x(Bi,Sb)2x_{2-x}Te3_3 at doping levels x \gtrsim 0.16. The observed magnetic transition is not sharp in temperature indicating a gradual magnetic ordering. We find that the evolution of magnetic ordering is consistent with formation of ferromagnetic islands which increase in number and/or volume with decreasing temperature. Resonant ARPES at the V L3L_3 edge reveals a nondispersing impurity band close to the Fermi level as well as V weight integrated into the host band structure. Calculations within the coherent potential approximation of the V contribution to the spectral function confirm that this impurity band is caused by V in substitutional sites. The implications of our results on the observation of the quantum anomalous Hall effect at mK temperatures are discussed

    Discovery of Lorentz-violating Weyl fermion semimetal state in LaAlGe materials

    Full text link
    We report theoretical and experimental discovery of Lorentz-violating Weyl fermion semimetal type-II state in the LaAlGe class of materials. Previously type-II Weyl state was predicted in WTe2 materials which remains unrealized in surface experiments. We show theoretically and experimentally that LaAlGe class of materials are the robust platforms for the study of type-II Weyl physics.Comment: This paper reports theoretical prediction and experimental discovery together. A detailed theoretical paper describing the topology of the full family of X(Lanthanides)AlGe materials will follow. Other related papers can be found at http://physics.princeton.edu/zahidhasangroup/index_WS.htm

    Correlation of optical reflectivity with numerical calculations for a two-dimensional photonic crystal designed in Ge

    No full text
    A two dimensional photonic crystal (2DPhC) with triangular symmetry is investigated using optical reflectivity measurements and numerical calculations. The system has been obtained by direct laser writing, using a pulsed laser (λ = 775 nm), perforating an In-doped Ge wafer. A lattice of holes with well-defined symmetry has been designed. Analyzing the spectral signature of PBGs recorded experimentaly with finite difference time domain theoretical calculations one was able to prove the relation between the geometric parameters (hole format, lattice constant) of the system and its ability to trap and guide the radiation in specific energy range. It was shown that at low frequency and telecommunication ranges of transvelsal electric modes photonic band gap occur. This structure may have potential aplications in designing photonic devices with applications in energy storage and conversion as potential alternative to Si-based technology

    Structure, reactivity, electronic configuration and magnetism of samarium atomic layers deposited on Si(001) by molecular beam epitaxy

    No full text
    The surface structure, interface reactivity, electron configuration and magnetic properties of Sm layers deposited on Si(0 0 1) at various temperatures are investigated by low-energy electron diffraction (LEED), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and magneto-optical Kerr effect (MOKE). It is found that metal Sm is present on samples prepared at low temperature, with an interface layer containing SmSi2 and Sm4Si3. When samples are prepared at high temperature, much less metal Sm is found, with an increasing amount of SmSi2. Room temperature ferromagnetism is observed for all prepared layers, with a decrease of the saturation magnetization when samples are prepared at high temperature. It is found that ferromagnetism implies mostly a compound with approximate stoichiometry Sm4Si3. Also, the decrease in the intensity of the XAS 2p3/2 → 3d white lines with the corresponding increasing amount of SmSi2 may be explained by assuming a higher occupancy of Sm 5d orbitals (5d2 configuration), most probably due to hybridation effects

    The Role of Ambient Gas and Pressure on the Structuring of Hard Diamond-Like Carbon Films Synthesized by Pulsed Laser Deposition

    No full text
    Hard carbon thin films were synthesized on Si (100) and quartz substrates by the Pulsed Laser Deposition (PLD) technique in vacuum or methane ambient to study their suitability for applications requiring high mechanical resistance. The deposited films’ surface morphology was investigated by scanning electron microscopy, crystalline status by X-ray diffraction, packing and density by X-ray reflectivity, chemical bonding by Raman and X-ray photoelectron spectroscopy, adherence by “pull-out” measurements and mechanical properties by nanoindentation tests. Films synthesized in vacuum were a-C DLC type, while films synthesized in methane were categorized as a-C:H. The majority of PLD films consisted of two layers: one low density layer towards the surface and a higher density layer in contact with the substrate. The deposition gas pressure played a crucial role on films thickness, component layers thickness ratio, structure and mechanical properties. The films were smooth, amorphous and composed of a mixture of sp3-sp2 carbon, with sp3 content ranging between 50% and 90%. The thickness and density of the two constituent layers of a film directly determined its mechanical properties

    Impact of band-bending on the k-resolved electronic structure of Si-doped GaN

    No full text
    Band bending at semiconductor surfaces and interfaces is the key to applications ranging from classical transistors to topological quantum computing. A semiconductor particularly important for optical as well as microwave devices is GaN. What makes the material useful is not only its large bandgap but also that it can be heavily doped to become metallic. Here, we apply soft-x-ray angle-resolved photoelectron spectroscopy (ARPES) to metallic Si-doped GaN to explore the electron density and momentum-resolved band dispersions of the valence and conduction electrons varying through the surface band-bending region. We find an upward band bending, where the measured band occupation reduces toward the surface, as probed with low photon energies 1.4 keV, where the photoelectron mean free path exceeds the spatial extent of the band-bending region. Our quantitative analysis of the experimental data describes the potential variation in the band-bending region via self-consistent Poisson-Schrödinger equations. We put forward an insightful model to simulate the ARPES spectra from this region through summing up the contribution from all atomic layers, weighted by the photoelectron mean free path, under in-phase conditions achieved at particular values of the photoelectron out-of-plane momentum. The model adequately describes the peculiarities of the ARPES spectra caused by the surface band bending, including the photon-energy dependence of the apparent band occupation and Fermi-surface area, and allows accurate determination of the band-bending profile and values of the photoelectron mean free path. Finally, comparison of our data with supercell density functional theory calculations reveals the preferential location of Si atoms as substitutional for Ga, with the doped electrons entering the GaN conduction bands without formation of separate impurity states as would occur for Si interstitials. Our theoretical and experimental results resolve fundamental questions underpinning device performance of the GaN-based and other semiconductor materials in general and demonstrate a general methodology for quantitative studies of electron states in the band-bending region.ISSN:2643-156

    Thickness Influence on In Vitro Biocompatibility of Titanium Nitride Thin Films Synthesized by Pulsed Laser Deposition

    No full text
    We report a study on the biocompatibility vs. thickness in the case of titanium nitride (TiN) films synthesized on 410 medical grade stainless steel substrates by pulsed laser deposition. The films were grown in a nitrogen atmosphere, and their in vitro cytotoxicity was assessed according to ISO 10993-5 [1]. Extensive physical-chemical analyses have been carried out on the deposited structures with various thicknesses in order to explain the differences in biological behavior: profilometry, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction and surface energy measurements. XPS revealed the presence of titanium oxynitride beside TiN in amounts that vary with the film thickness. The cytocompatibility of films seems to be influenced by their TiN surface content. The thinner films seem to be more suitable for medical applications, due to the combined high values of bonding strength and superior cytocompatibility
    corecore