13 research outputs found

    Different Behavioral Experiences Produce Distinctive Parallel Changes in, and Correlate With, Frontal Cortex and Hippocampal Global Post-translational Histone Levels.

    Get PDF
    While it is clear that behavioral experience modulates epigenetic profiles, it is less evident how the nature of that experience influences outcomes and whether epigenetic/genetic biomarkers could be extracted to classify different types of behavioral experience. To begin to address this question, male and female mice were subjected to either a Fixed Interval (FI) schedule of food reward, or a single episode of forced swim followed by restraint stress, or no explicit behavioral experience after which global expression levels of two activating (H3K9ac and H3K4me3) and two repressive (H3K9me2 and H3k27me3) post-translational histone modifications (PTHMs), were measured in hippocampus (HIPP) and frontal cortex (FC). The specific nature of the behavioral experience differentiated profiles of PTHMs in a sex- and brain region-dependent manner, with all 4 PTHMs changing in parallel in response to different behavioral experiences. These different behavioral experiences also modified the pattern of correlations of PTHMs both within and across FC and HIPP. Unexpectedly, highly robust correlations were found between global PTHM levels and behavioral performances, suggesting that global PTHMs may provide a higher-order pattern recognition function. Further efforts are needed to determine the generality of such findings and what characteristics of behavioral experience are critical for modulating PTHM responses

    Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology.

    Get PDF
    Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a \u27no behavioral experience\u27 group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies

    The Hormonal Correlates of Male Chimpanzee Social Behavior.

    Full text link
    Male chimpanzees are well known for their aggressive behavior. In this dissertation I investigate the hormonal correlates of three types of male chimpanzee aggression: within-group male-male aggression, between-group territorial aggression, and between species predatory aggression. Specifically, I examined how testosterone and cortisol, two steroid hormones, mediate these types of aggression. Within groups, male chimpanzees compete with each other to obtain matings with females. While engaged in this form of reproductive aggression, males displayed increased testosterone levels, but only when competing for specific females. Rates of male aggression were elevated when they competed for parous, estrous females. In contrast, levels of aggression were relatively low in the presence of nulliparous females, who represented less attractive mating partners. Consequently, male testosterone concentrations were higher in the presence of parous, estrous females compared to their baseline levels. The presence of nulliparous, estrous females had no effect on male testosterone concentrations. These results are consistent with the Challenge Hypothesis, which proposes that testosterone correlates with aggression only when the latter enhances fitness. In a novel test of the Challenge Hypothesis, I found that male chimpanzee testosterone concentrations increased during and shortly after territorial boundary patrols but not while they hunted. In addition, male chimpanzees displayed an anticipatory rise in testosterone before they engaged in territorial behavior. Further analyses revealed that male testosterone levels were significantly lower after hunting, perhaps due to the tolerance associated with meat sharing. Males that shared and received meat at hunts exhibited decrements in testosterone, while males who failed to obtain meat at hunts showed no change. In a third study, I examined all three types of aggression as they relate to stress. Male chimpanzees displayed acute stress responses and relatively high cortisol levels when they engaged in within-group reproductive aggression, between-group territorial aggression, and between species predatory aggression. As seen with testosterone, male chimpanzees showed an intriguing rise in cortisol before they began to participate in territorial and hunting behaviors. Thus, wild chimpanzees appear to be able to anticipate conflict situations. The cues that they use to anticipate these events, however, remain unknown and require further study.PHDAnthropologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/96063/1/mesobole_1.pd

    Sex-Dependent Effects of Developmental Lead Exposure on the Brain

    Get PDF
    The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output

    Protracted Impairment of Maternal Metabolic Health in Mouse Dams Following Pregnancy Exposure to a Mixture of Low Dose Endocrine-Disrupting Chemicals, a Pilot Study

    No full text
    Pregnancy, a period of increased metabolic demands coordinated by fluctuating steroid hormones, is an understudied critical window of disease susceptibility for later-life maternal metabolic health. Epidemiological studies have identified associations between exposures to various endocrine-disrupting chemicals (EDCs) with an increased risk for metabolic syndrome, obesity, and diabetes. Whether such adverse outcomes would be heightened by concurrent exposures to multiple EDCs during pregnancy, consistent with the reality that human exposures are to EDC mixtures, was examined in the current pilot study. Mouse dams were orally exposed to relatively low doses of four EDCs: (atrazine (10 mg/kg), bisphenol-A (50 µg/kg), perfluorooctanoic acid (0.1 mg/kg), 2,3,7,8-tetrachlorodibenzo-p-dioxin (0.036 µg/kg)), or the combination (MIX), from gestational day 7 until birth or for an equivalent 12 days in non-pregnant females. Glucose intolerance, serum lipids, weight, and visceral adiposity were assessed six months later. MIX-exposed dams exhibited hyperglycemia with a persistent elevation in blood glucose two hours after glucose administration in a glucose tolerance test, whereas no such effects were observed in MIX-exposed non-pregnant females. Correspondingly, MIX dams showed elevated serum low-density lipoprotein (LDL). There were no statistically significant differences in weight or visceral adipose; MIX dams showed an average visceral adipose volume to body volume ratio of 0.09, while the vehicle dams had an average ratio of 0.07. Collectively, these findings provide biological plausibility for the epidemiological associations observed between EDC exposures during pregnancy and subsequent maternal metabolic dyshomeostasis, and proof of concept data that highlight the importance of considering complex EDC mixtures based of off common health outcomes, e.g., for increased risk for later-life maternal metabolic effects following pregnancy

    Effects of neonatal inhalation exposure to ultrafine carbon particles on pathology and behavioral outcomes in C57BL/6J mice

    No full text
    Abstract Background Recent epidemiological studies indicate early-life exposure to air pollution is associated with adverse neurodevelopmental outcomes. Previous studies investigating neonatal exposure to ambient fine and ultrafine particles have shown sex specific inflammation-linked pathological changes and protracted learning deficits. A potential contributor to the adverse phenotypes from developmental exposure to particulate matter observed in previous studies may be elemental carbon, a well-known contributor to pollution particulate. The present study is an evaluation of pathological and protracted behavioral alterations in adulthood following subacute neonatal exposure to ultrafine elemental carbon. C57BL/6J mice were exposed to ultrafine elemental carbon at 50 μg/m3 from postnatal days 4–7 and 10–13 for 4 h/day. Behavioral outcomes measured were locomotor activity, novel object recognition (short-term memory), elevated plus maze (anxiety-like behavior), fixed interval (FI) schedule of food reward (learning, timing) and differential reinforcement of low rate (DRL) schedule of food reward (impulsivity, inability to inhibit responding). Neuropathology was assessed by measures of inflammation (glial fibrillary-acidic protein), myelin basic protein expression in the corpus callosum, and lateral ventricle area. Results Twenty-four hours following the final exposure day, no significant differences in anogenital distance, body weight or central nervous system pathological markers were observed in offspring of either sex. Nor were significant changes observed in novel object recognition, elevated plus maze performance, FI, or DRL schedule-controlled behavior in either females or males. Conclusion The limited effect of neonatal exposure to ultrafine elemental carbon suggests this component of air pollution is not a substantial contributor to the behavioral alterations and neuropathology previously observed in response to ambient pollution particulate exposures. Rather, other more reactive constituent species, organic and/or inorganic, gas-phase components, or combinations of constituents may be involved. Defining these neurotoxic components is critical to the formulation of better animal models, more focused mechanistic assessments, and potential regulatory policies for air pollution
    corecore