22 research outputs found

    Comparative Examination of Plasmoid Ejection at Mercury, Earth, Jupiter, and Saturn

    Get PDF
    The onset of magnetic reconnection in the near-tail of Earth, long known to herald the fast magnetospheric convection that leads to geomagnetic storms and substorms, is very closely associated with the formation and down-tail ejection of magnetic loops or flux ropes called plasmoids. Plasmoids form as a result of the fragmentation of preexisting cross-tail current sheet as a result of magnetic reconnection. Depending upon the number, location, and intensity of the individual reconnection X-lines and how they evolve, some of these loop-like or helical magnetic structures may also be carried sunward. At the inner edge of the tail they are expected to "re-reconnect' with the planetary magnetic field and dissipate. Plasmoid ejection has now been observed in the magnetotails of Mercury, Earth, Jupiter, and Saturn. These magnetic field and charged particle measurements have been taken by the MESSENGER, Voyager, Galileo, Cassini, and numerous Earth missions. Here we present a comparative examination of the structure and dynamics of plasmoids observed in the magnetotails of these 5 planets. The results are used to learn more about how these magnetic structures form and to assess similarities and differences in the nature of magnetotail reconnection at these planets

    Proceedings of the 3rd Biennial Conference of the Society for Implementation Research Collaboration (SIRC) 2015: advancing efficient methodologies through community partnerships and team science

    Get PDF
    It is well documented that the majority of adults, children and families in need of evidence-based behavioral health interventionsi do not receive them [1, 2] and that few robust empirically supported methods for implementing evidence-based practices (EBPs) exist. The Society for Implementation Research Collaboration (SIRC) represents a burgeoning effort to advance the innovation and rigor of implementation research and is uniquely focused on bringing together researchers and stakeholders committed to evaluating the implementation of complex evidence-based behavioral health interventions. Through its diverse activities and membership, SIRC aims to foster the promise of implementation research to better serve the behavioral health needs of the population by identifying rigorous, relevant, and efficient strategies that successfully transfer scientific evidence to clinical knowledge for use in real world settings [3]. SIRC began as a National Institute of Mental Health (NIMH)-funded conference series in 2010 (previously titled the “Seattle Implementation Research Conference”; $150,000 USD for 3 conferences in 2011, 2013, and 2015) with the recognition that there were multiple researchers and stakeholdersi working in parallel on innovative implementation science projects in behavioral health, but that formal channels for communicating and collaborating with one another were relatively unavailable. There was a significant need for a forum within which implementation researchers and stakeholders could learn from one another, refine approaches to science and practice, and develop an implementation research agenda using common measures, methods, and research principles to improve both the frequency and quality with which behavioral health treatment implementation is evaluated. SIRC’s membership growth is a testament to this identified need with more than 1000 members from 2011 to the present.ii SIRC’s primary objectives are to: (1) foster communication and collaboration across diverse groups, including implementation researchers, intermediariesi, as well as community stakeholders (SIRC uses the term “EBP champions” for these groups) – and to do so across multiple career levels (e.g., students, early career faculty, established investigators); and (2) enhance and disseminate rigorous measures and methodologies for implementing EBPs and evaluating EBP implementation efforts. These objectives are well aligned with Glasgow and colleagues’ [4] five core tenets deemed critical for advancing implementation science: collaboration, efficiency and speed, rigor and relevance, improved capacity, and cumulative knowledge. SIRC advances these objectives and tenets through in-person conferences, which bring together multidisciplinary implementation researchers and those implementing evidence-based behavioral health interventions in the community to share their work and create professional connections and collaborations

    Dataset to support Chandra observations of Jupiter's X-ray auroral emission during Juno apojove 2017

    No full text
    Dataset supports the paper &#39;Chandra observations of Jupiter&#39;s X-ray auroral emission during Juno apojove 2017&#39; published in Journal of Geophysical Research: Planets (Special edition journal, Midway through Juno).</span

    Concept For A New Frontiers Mission To Ganymede: A Planetary Science Summer School Study

    No full text
    As part of the NASA Planetary Science Summer School 2010, the Ganymede Interior, Surface and Magnetosphere Observer (GISMO) team developed a robotic mission to Ganymede, one of Jupiter\u27s icy moons. This process included the formulation of the science objectives and the selection of a payload tailored to meet these goals. The team then designed a mission architecture aimed toward achieving the science objectives. Using a sequence of 14 flybys of Ganymede, the vehicle would use a simple, staged operation of the science payload. This timeline allows for a simplified design, with relatively low risk and cost. Principle challenges included the finite power available to the vehicle, along with a limited data downlink rate. Otherwise, this preliminary design would meet all mission requirements, as determined by the science goals, and within the allocated cost cap. © 2011 IEEE

    On the origin of the 2-3 minutes quasi-periodicity in the Jovian magnetosphere

    Full text link
    Several kinds of periodicities have been observed at Jupiter since the first probes fly-by. However, pre- vious investigations mainly focused on the longer timescales, such as the 40 minutes (QP40) or the 2- 3 days quasi-periodicity. Here we describe the recent finding of the 2-3 minutes quasi-periodic occurrence of UV flares in the active region of the polar aurora. These observations are then compared to other measurements of such quasi-periodic behaviors in electron and magnetic field data and their probably common origin is discussed

    Variability of Jupiter's Main Auroral Emission and Satellite Footprints Observed With HST During the Galileo Era

    Full text link
    Abstract Hubble Space Telescope images of Jupiter's UV aurora show that the main emission occasionally contracts or expands, shifting toward or away from the magnetic pole by several degrees in response to changes in the solar wind dynamic pressure and Io's volcanic activity. When the auroral footprints of the Galilean satellites move with the main emission this indicates a change in the stretched field line configuration that shifts the ionospheric mapping of a given radial distance at the equator. However, in some cases, the main emission shifts independently from the satellite footprints, indicating that the variability stems from some other part of the corotation enforcement current system that produces Jupiter's main auroral emissions. Here, we analyze HST images from the Galileo era (1996–2003) and compare latitudinal shifts of the Ganymede footprint and the main auroral emission. We focus on images with overlapping Galileo measurements because concurrent measurements are available of the current sheet strength, which indicates the amount of field line stretching and can influence both the main emission and satellite footprints. We show that the Ganymede footprint and main auroral emission typically, but do not always, move together. Additionally, we find that the auroral shifts are only weakly linked to changes in the current sheet strength measured by Galileo. We discuss implications of the observed auroral shifts in terms of the magnetospheric mapping. Finally, we establish how the statistical reference main emission contours vary with central meridian longitude and show that the dependence results from magnetospheric local time asymmetries

    Relating Jupiter's auroral features to magnetospheric sources

    Full text link
    In order to understand the physical processes that produce the various auroral features we must first understand how the auroral emissions are linked to magnetospheric sources. However, magnetic mapping of Jupiter’s polar auroral emissions to equatorial regions in which source currents are plausibly generated is highly uncertain because the available field models are inaccurate beyond ~30 Jovian radii. We have related auroral features to their magnetospheric sources through a flux equivalence calculation, where we require that the magnetic flux in some specified region at the equator equals the magnetic flux in the area to which it links in the ionosphere. This approach is preferred to tracing model field lines for mapping the auroral polar regions, because the latter method is inaccurate at large distances. Here we present our results, highlighting new mappings for the southern hemisphere, and will compare our mapping to auroral observations from both hemispheres. In particular we relate equatorial regions in which reconnection events have been identified with the locations of polar dawn spots and other possible auroral signatures of tail reconnection. We find that the mapping reproduces several other key auroral features. The polar auroral active region maps to just outside the dayside magnetopause, a region that we identify as the Jovian polar cusp. The polar auroral swirl region maps to open tail field lines and is interpreted as the Jovian polar cap. These interpretations are consistent with some earlier predictions based on auroral observations. We identify the boundary between open and closed flux in the ionosphere, which previously was not well defined. We show that the magnetic flux through the regions interpreted as the polar caps in both hemispheres closely matches the estimated flux through the tail lobe, consistent with the suggestion that this area maps to open field lines

    Magnetic reconnection and associated transient phenomena within the magnetospheres of Jupiter and Saturn

    No full text
    We review in situ observations made in Jupiter and Saturn’s magnetosphere that illustrate the possible roles of magnetic reconnection in rapidly-rotating magnetospheres. In the Earth’s solar wind-driven magnetosphere, the magnetospheric convection is classically described as a cycle of dayside opening and tail closing reconnection (the Dungey cycle). For the rapidly-rotating Jovian and Kronian magnetospheres, heavily populated by internal plasma sources, the classical concept (the Vasyliunas cycle) is that the magnetic reconnection plays a key role in the final stage of the radial plasma transport across the disk. By cutting and closing flux tubes that have been elongated by the rotational stress, the reconnection process would lead to the formation of plasmoids that propagate down the tail, contributing to the final evacuation of the internally produced plasma and allowing the return of the magnetic flux toward the planet. This process has been studied by inspecting possible ‘local’ signatures of the reconnection, as magnetic field reversals, plasma flow anisotropies, energetic particle bursts, and more global consequences on the magnetospheric activity.The investigations made at Jupiter support the concept of an ‘average’ X-line, extended in the dawn/dusk direction and located at 90–120 Jovian radius (RJ) on the night side. The existence of a similar average X-line has not yet been established at Saturn, perhaps by lack of statistics. Both at Jupiter and Saturn, the reconfiguration signatures are consistent with magnetospheric dipolarizations and formation of plasmoids and flux ropes. In several cases, the reconfigurations also appear to be closely associated with large scale activations of the magnetosphere, seen from the radio and auroral emissions. Nevertheless, the statistical study also suggests that the reconnection events and the associated plasmoids are not frequent enough to explain a plasma evacuation that matches the mass input rate from the satellites and the rings. Different forms of transport should thus act together to evacuate the plasma, which still needs to be established. Investigations of reconnection signatures at the magnetopause and other processes as the Kelvin-Helmholtz instability are also reviewed. A provisional conclusion would be that the dayside reconnection is unlikely a crucial process in the overall dynamics. On the small scales, the detailed analysis of one reconnection event at Jupiter shows that the local plasma signatures (field-aligned flows, energetic particle bursts…) are very similar to those observed at Earth, with likely a similar scaling with respect to characteristic kinetic lengths (Larmor radius and inertial scales).</p

    Long-Term Variability of Jupiter's Magnetodisk and Implications for the Aurora

    Full text link
    Observations of Jupiter's UV auroral emissions collected over several years show that the ionospheric positions of the main emission and the Ganymede footprint can vary by as much as 3° in latitude. One explanation for this shift is a change of Jupiter's current sheet current density, which would alter the amount of field line stretching and displace the ionospheric mapping of field lines from a given radial distance in the magnetosphere. In this study we measure the long‐term variability of Jupiter's magnetodisk using Galileo magnetometer data collected from 1996 to 2003. Using the Connerney et al. (1981) current sheet model, we calculate the current sheet density parameter that gives the best fit to the data from each orbit and find that the current density parameter varies by about 15% of its average value during the Galileo era. We investigate possible relationships between the observed current sheet variability and quantities such as Io's plasma torus production rate inferred from volcanic activity and external solar wind conditions extrapolated from data at 1 AU but find only a weak correlation. Finally, we trace Khurana (1997) model field lines to show that the observed changes in Jupiter's current sheet are sufficient to shift the ionospheric footprint of Ganymede and main auroral emission by a few degrees of latitude, consistent with the magnitude of auroral variability observed by Hubble Space Telescope (HST). However, we find that the measured auroral shifts in HST images are not consistent with concurrent changes in the current density parameter measured by Galileo
    corecore