88 research outputs found

    Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Get PDF
    EA BIOmEInternational audienceThe ecotoxicological impact of leptospermone, a ÎČ-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0× (control), 1× or 10× recommended dose of leptospermone. The ÎČ-triketone was moderately adsorbed to both soils (i.e.,: K fa ∌ 1.2 and K −1 oc ∌ 140 mL g). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT 50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α-and ÎČ-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where ÎČ-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated

    Isolation and characterization of Bradyrhizobium sp. SR1 degrading two ÎČ-triketone herbicides

    Get PDF
    In this study, a bacterial strain able to use sulcotrione,a ÎČ-triketone herbicide, as sole source of carbon and energy was isolated from soil samples previously treated with this herbicide. Phylogenetic study based on16S rRNA gene sequence showed that the isolate has 100 % of similarity with several Bradyrhizobium and was accordingly designated as Bradyrhizobium sp. SR1. Plasmid profiling revealed the presence of a large plasmid (>50 kb) in SR1 not cured under nonselective conditions. Its transfer to Escherichia coli by electroporation failed to induce ÎČ-triketone degrading capacity,suggesting that degrading genes possibly located on this plasmid cannot be expressed in E. coli or that they are not plasmid borne. The evaluation of the SR1 ability to degrade various synthetic (mesotrione and tembotrione) and natural (leptospermone) triketones showed that this strain was also able to degrademesotrione. Although SR1 was able to entirely dissipate both herbicides, degradation rate of sulcotrione was ten times higher than that of mesotrione, showing a greater affinity of degrading-enzyme system to sulcotrione. Degradation pathway of sulcotrione involved the formation of 2-chloro-4-mesylbenzoic acid (CMBA), previously identified in sulcotrione degradation, and of a new metabolite identified as hydroxy-sulcotrione.Mesotrione degradation pathway leads to the accumulation of-methylsulfonyl-2-nitrobenzoic acid(MNBA) and 2-amino-4 methylsulfonylbenzoic acid(AMBA), two well-known metabolites of this herbicide. Along with the dissipation of ÎČ-triketones, one could observe the decrease in 4-hydroxyphenylpyruvate dioxygenase(HPPD) inhibition, indicating that toxicity was due to parent molecules, and not to the formed metabolites. This is the first report of the isolation of bacterial strain able to transform two ÎČ-triketones

    Lab to Field Assessment of the Ecotoxicological Impact of Chlorpyrifos, Isoproturon, or Tebuconazole on the Diversity and Composition of the Soil Bacterial Community

    Get PDF
    Pesticides are intentionally applied to agricultural fields for crop protection. They can harm non-target organisms such as soil microorganisms involved in important ecosystem functions with impacts at the global scale. Within the frame of the pesticide registration process, the ecotoxicological impact of pesticides on soil microorganisms is still based on carbon and nitrogen mineralization tests, despite the availability of more extensive approaches analyzing the abundance, activity or diversity of soil microorganisms. In this study, we used a high-density DNA microarray (PhyloChip) and 16S rDNA amplicon next-generation sequencing (NGS) to analyze the impact of the organophosphate insecticide chlorpyrifos (CHL), the phenyl-urea herbicide isoproturon (IPU), or the triazole fungicide tebuconazole (TCZ) on the diversity and composition of the soil bacterial community. To our knowledge, it is the first time that the combination of these approaches are applied to assess the impact of these three pesticides in a lab-to-field experimental design. The PhyloChip analysis revealed that although no significant changes in the composition of the bacterial community were observed in soil microcosms exposed to the pesticides, significant differences in detected operational taxonomic units (OTUs) were observed in the field experiment between pesticide treatments and control for all three tested pesticides after 70 days of exposure. NGS revealed that the bacterial diversity and composition varied over time. This trend was more marked in the microcosm than in the field study. Only slight but significant transient effects of CHL or TCZ were observed in the microcosm and the field study, respectively. IPU was not found to significantly modify the soil bacterial diversity or composition. Our results are in accordance with conclusions of the Environmental Food Safety Authority (EFSA), which concluded that these three pesticides may have a low risk toward soil microorganisms

    Genomics based approach to identify the genes involved in ipu mineralization in sphingomonas sp.sh

    No full text
    Phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralised in aFrench agricultural soil previously exposed to IPU. A bacterial strain able to metabolise IPU was isolated from this soil adapted toIPU mineralization

    Etude de l'évolution du potentiel génétique de populations bactériennes dégradant l'atrazine

    No full text
    L atrazine, un des herbicides les plus utilisĂ©s pour contrĂŽler le dĂ©veloppement des plantes adventices dans les cultures, a conduit Ă  la contamination de l environnement. L exposition chronique Ă  cet herbicide a conduit Ă  l Ă©mergence de populations microbiennes du sol capables de dĂ©grader l atrazine et de l utiliser comme une source d azote pour leur croissance. Ces populations microbiennes sont responsables de la biodĂ©gradation accĂ©lĂ©rĂ©e (BDA) de l atrazine, un service Ă©cosystĂ©mique contribuant Ă  diminuer la persistance de cet herbicidedans l environnement. L objectif de ce travail Ă©tait d Ă©tudier les mĂ©canismes gĂ©nĂ©tiques et physiologiques responsables du fonctionnement et de l amĂ©lioration de ce service Ă©cosystĂ©mique. Nous avons appliquĂ© une dĂ©marche expĂ©rimentale allant des gĂšnes codant la dĂ©gradation Ă  des communautĂ©s microbiennes afin d identifier les processus adaptatifs impliquĂ©s dans l Ă©volution de la fonction de BDA de l atrazine.Le premier volet a consistĂ© Ă  Ă©valuer l importance de mutations accumulĂ©es dans le gĂšne atzA dans la transformation de l atrazine en hydroxyatrazine catalysĂ©e par AtzA. Le sĂ©quençage de gĂšnes atzA de diffĂ©rents isolats bactĂ©riens dĂ©gradant l atrazine (Pseudomonas sp. ADP WT, Pseudomonas sp. ADP Ps et diffĂ©rents Chelatobacter heintzii) a montrĂ© que la sĂ©quence du gĂšne atzA Ă©tait trĂšs conservĂ©e. Toutefois quatre mutations non silencieuses ont pu ĂȘtre identifiĂ©es (1 chez Pseudomonas sp. ADP MSE et 3 chez Chelatobacterheintzii). La modĂ©lisation de la structure de la protĂ©ine AtzA a permis de montrer que trois des mutations Ă©taient situĂ©es dans des rĂ©gions importantes (site actif, poche de liaison avec l atrazine et liaison avec le mĂ©talFe2+. [...] Le second volet a consistĂ© Ă  Ă©tudier la plasticitĂ© de la voie de biodĂ©gradation de l atrazine dans deux conditions opposĂ©es : (i) la premiĂšre visait Ă  Ă©valuer la persistance de la capacitĂ© de dĂ©gradation en absence de pression de sĂ©lection et (ii) la seconde visait Ă  Ă©valuer l Ă©volution de la capacitĂ© de dĂ©gradation en prĂ©sence d une pression de sĂ©lection Ă©levĂ©e. Pour conduire ces Ă©tudes, des manipulations d Ă©volution expĂ©rimentale sur Pseudomonas sp. ADP ont Ă©tĂ© menĂ©es. (i) L exposition Ă  l acide cyanurique, intermĂ©diaire mĂ©tabolique de l atrazine, a conduit Ă  la sĂ©lection d une population nouvellement Ă©voluĂ©e capable de croĂźtre plus rapidement dans un milieu de culture ne contenant que l acide cyanurique comme source d azote. Cette population est caractĂ©risĂ©e par une dĂ©lĂ©tion d une rĂ©gion de 47 kb du plasmide ADP1 contenant les gĂšnes atzABC. Les analyses conduites ont permis de conclure que le gain de compĂ©titivitĂ© de la population Ă©voluĂ©e rĂ©sidait dans la perte du fardeau gĂ©nĂ©tique reprĂ©sentĂ© par la rĂ©gion de 47 kb, la capacitĂ© de dĂ©gradation de l acide cyanurique restant inchangĂ©e. (ii) L exposition Ă  l atrazine a conduit Ă  la sĂ©lection d une populationnouvellement Ă©voluĂ©e caractĂ©risĂ©e par l insertion du plasmide ADP1 en quasi-totalitĂ© sur le chromosome bactĂ©rien. [...] Le troisiĂšme volet a consistĂ© Ă  dĂ©velopper un outil permettant d Ă©valuer, Ă  l Ă©chelle d une communautĂ© microbienne synthĂ©tique, l Ă©volution du potentiel gĂ©nĂ©tique dĂ©gradant. Pour ce faire quatre souches dĂ©gradantes dont une, Arthrobacter sp. TES6, isolĂ©e au cours de cette Ă©tude, ont Ă©tĂ© choisies. [...] Ces travaux montrent que la fonction de biodĂ©gradation accĂ©lĂ©rĂ©e de l atrazine est trĂšs versatile et qu elle est en constante Ă©volution. Il met en Ă©vidence que le principal facteur pilotant cette Ă©volution est le niveau d exposition des populations dĂ©gradantes au pesticide.Atrazine, one of the most used herbicide to control the development of weeds in crop, has led to the contamination of the environment. Repeated exposure to this herbicide resulted in the emergence of microbial populations able to degrade atrazine and to use it as a nitrogen source for its growth. These microbial populations are responsible for accelerated biodegradation of atrazine (BDA), a key ecosystemic service diminishing the persistence of this herbicide in the environment. The aim of this PhD work was to study genetic and physiological mechanisms responsible for functioning and improving of this ecosystemic service. We applied an experimental approach starting from genes to communities degrading atrazine in order to identify processes of adaptation involved in the evolution of accelerated biodegradation function.The first part of the PhD aimed at evaluating the importance of accumulation of single mutations in the atzA gene for the activity of AtzA transforming atrazine to hydroxyatrazine. Sequencing or atzA genes amplified from different atrazine-degrading isolates (Pseudomonas sp. ADP WT, Pseudomonas sp. ADP Ps and differents Chelatobacter heintzii) showed that atzA sequence was conserved. However, four non synonymous mutations were identified (1 for Pseudomonas sp. ADP Ps and 3 for Chelatobacter heintzii). Modeling of AtzA structure showed that three mutations were located in important regions (active site, interaction with atrazine and with the metal Fe2+). [...] The second part aimed at studying the plasticity of the atrazine-degrading pathway in two opposed conditions: (i) one aiming at evaluating the persistence of degrading capability in absence of selection pressure and (ii) a second one aiming at evaluating the evolution of degrading capability under high selection pressure exerted by atrazine. With these aims, experimental evolutions were carried out with Pseudomonas sp. ADP. (i) We showed that cyanuric acid exposure led to the selection of a newly-evolved population characterized by increased growing ability on culture medium containing this substance as nitrogen source. This population is characterized by the deletion of a 47 kb region containing atzABC genes from ADP1. We showed that increased fitness of newly-evolved population was due to the selective loss of the genetic burden represented by the 47 kb region, the cyanuric acid degrading ability remaining unchanged. (ii) Atrazine exposure led to the selection of population characterized by the insertion of ADP1 plasmid in the bacterial chromosome. [...] The third part aimed at developing a tool allowing monitoring the evolution of atrazine-degrading genetic potential at the scale of a synthetic microbial community. To do so four degrading strains among which, one was isolated in this study, were chosen. [...] Altogether, these results showed that the atrazine accelerated biodegradation function is highly versatile and under constant evolution. Furthermore, they highlight that the exposure to atrazine is the key parameter driving the evolution of degrading populationDIJON-BU Doc.Ă©lectronique (212319901) / SudocSudocFranceF

    Isoproturon

    No full text
    L usage rĂ©pĂ©tĂ© d isoproturon (IPU) en agriculture pour contrĂŽler dĂ©veloppement de plantes adventices dans les cultures cĂ©rĂ©aliĂšres a non seulement abouti Ă  la contamination du sol et des ressources en eaux mais Ă©galement Ă  l adaptation de la microflore du sol Ă  la dĂ©gradation accĂ©lĂ©rĂ©e de cet herbicide appartenant Ă  la famille des phĂ©nylurĂ©es. A l heure actuelle, les mĂ©canismes microbiens impliquĂ©s dans cette adaptation ne sont pas encore parfaitement Ă©lucidĂ©s. Dans ce contexte, l objectif de cette Ă©tude Ă©tait d explorer les processus et les facteurs impliquĂ©s dans la biodĂ©gradation de l isoproturon, et ce, depuis l Ă©chelle agricole de la parcelle jusqu Ă  celle des gĂšnes codant cette fonction dans des populations microbienne dĂ©gradantes.L Ă©tude rĂ©alisĂ©e Ă  partir d une parcelle expĂ©rimentale du domaine d Epoisses, cultivĂ©e selon une rotation blĂ© d hiver/ orge / colza, a montrĂ© que, suite Ă  l usage rĂ©pĂ©tĂ© d IPU, la microflore du sol s Ă©tait adaptĂ©e Ă  sa minĂ©ralisation. Des analyses rĂ©alisĂ©es Ă  l aide d outils statistiques et gĂ©ostatistiques ont rĂ©vĂ©lĂ© l existence d une variabilitĂ© spatiale de la minĂ©ralisation de l IPU au sein de la parcelle agricole. Celle-ci s est rĂ©vĂ©lĂ©e ĂȘtre non seulement corrĂ©lĂ©e avec diffĂ©rents caractĂ©ristiques physicochimiques du sol (C/N, CEC, ) mais Ă©galement avec le plan d Ă©pandage des pesticides au cours de la rotation culturale.Afin de mieux Ă©tudier les mĂ©canismes molĂ©culaires responsables de la minĂ©ralisation de l IPU, une culture bactĂ©rienne ainsi qu une souche (Sphingomonas sp. SH) minĂ©ralisant l IPU ont Ă©tĂ© isolĂ©es par enrichissement Ă  partir de deux sols diffĂ©rents, tous deux adaptĂ©s Ă  la biodĂ©gradation accĂ©lĂ©rĂ©e de l IPU. La culture bactĂ©rienne et la souche pure ont toutes deux montrĂ© un mĂ©tabolisme spĂ©cifique pour la dĂ©gradation de l IPU, Ă©tant capables de dĂ©grader l IPU et ses principaux mĂ©tabolites mais aucun des autres herbicides de la famille des phĂ©nylurĂ©es. La culture bactĂ©rienne et la souche prĂ©sentaient une activitĂ© dĂ©gradante optimale Ă  pH7,5 et Ă©taient affectĂ©es par des pH infĂ©rieurs et supĂ©rieurs Ă  cette valeur optimale. Sur la base des mĂ©tabolites accumulĂ©s lors de la dĂ©gradation de l IPU, nous avons proposĂ© que l IPU serait dĂ©gradĂ© par deux dĂ©mĂ©thylations successives, suivi par la coupure de la chaine urĂ©e aboutissant Ă  l accumulation de 4-isopropylaniline, et finalement la minĂ©ralisation du cycle phĂ©nyl.Afin d identifier les gĂšnes impliquĂ©s dans la minĂ©ralisation de l IPU, une banque de clones BAC a Ă©tĂ© rĂ©alisĂ©e Ă  partir de l ADN gĂ©nomique purifiĂ© de la culture bactĂ©rienne. Bien que le crible fonctionnel rĂ©alisĂ© n a pas permis d identifier de BAC capable de dĂ©grader l IPU ou l un de ses mĂ©tabolites, un criblage molĂ©culaire par PCR ciblant la sĂ©quence catA codant la catĂ©chol 1,2-dioxygĂ©nase, nous a permis d identifier trois BACs. Le pyrosĂ©quençage des ces 3 BACs et l agrĂ©gation des sĂ©quences correspondantes ont permis d identifier un fragment gĂ©nomique de 33 kb prĂ©sentant notamment l opĂ©ron cat impliquĂ© dans le clivage ortho du cycle phĂ©nyl du catĂ©chol. De ce fait nous avons Ă©mis l hypothĂšse selon laquelle la 4-isopropylaniline formĂ©e lors de la dĂ©gradation de l IPU pourrait ĂȘtre minĂ©ralisĂ©e par le clivage ortho du catĂ©chol, un intermĂ©diaire clef de la voie des beta-kĂ©toadipates. Ceci nous a donc permis de proposer une voie mĂ©tabolique pour la voie basse de la dĂ©gradation de l IPU qui, jusqu alors, n avait pas encore Ă©tĂ© dĂ©crite.Frequent use of phenylurea herbicide isoproturon (IPU) in agricultural fields has resulted not only in the contamination of the natural resources including soil and water but also in the adaptation of the soil microflora to its rapid degradation. However, up to now, the mechanisms underlying this microbial adaptation are not well elucidated. The aim of this study was to explore the processes and factors implicated in IPU degradation from the agricultural field to the genes coding for catabolic genes. The study carried out at the experimental field of Epoisses cropped with a winter wheat / barley / rape seed crop rotation indicated that as a result of its periodically repeated use, the soil microflora adapted to IPU mineralization activity. Further analysis using exploratory and geostatistical tools demonstrated the existence of spatial variability in IPU mineralization activity at the field scale which was correlated not only with several soil physico-chemical parameters like organic matter content, CEC and C/N ratio but also with the pesticide application plan over a three year crop rotation. In order to get further insight into underlying mechanisms, an IPU mineralizing bacterial culture and strain Sphingomonas sp. SH were isolated through enrichment cultures performed from two different adapted soils. Both had the catabolic activities highly specific for the mineralization of IPU and its metabolites but none of other structurally related phenylurea herbicides. IPU metabolic activity of both the mixed culture and the strain SH was found to be affected by pH with optimal activity taking place at pH 7.5. Based on the accumulation of different known metabolites during mineralization kinetics, IPU metabolic pathway was proposed to be initiated by two successive demethylations, followed by cleavage of the urea side chain resulting in the accumulation of 4-isopropylaniline, and ultimately the mineralization of the phenyl ring. In order to identify the genes involved in IPU degradation, BAC clone library was established from the genomic DNA of the bacterial culture. Although, the functional screening did not yield in identifying any BAC clone able to degrade IPU or its known metabolites, the PCR based screening led us to identify a cat gene cluster involved in ortho-cleavage of the phenyl ring of catechol through beta-ketoadipate pathway. Based on this finding, it was hypothesized that phenyl ring of 4-isopropylaniline formed during IPU transformation might be mineralized through ortho-cleavage of catechol. This finding allowed us to propose the lower IPU metabolic pathway which was not yet described.DIJON-BU Doc.Ă©lectronique (212319901) / SudocSudocFranceF

    Influence de la biodégradation dans l'atténuation des pesticides sur un bassin versant viticole : potentialité des différents éléments du paysage et rÎle des zones tampons

    No full text
    Session 1 - Des usages aux impacts : les indicateurs EA EcolDurNos travaux rĂ©alisĂ©s sur le bassin viticole de la Morcille ont montrĂ© que les diffĂ©rents compartiments du paysage (sol de la parcelle, bande enherbĂ©e et sĂ©diments) prĂ©sentaient une aptitude Ă  minĂ©raliser le diuron. La capacitĂ© Ă©puratrice de ces diffĂ©rents compartiments Ă©volue en fonction du niveau d'exposition au contaminant. L'importance du flux Ă©rosif de la parcelle viticole vers le cours d'eau pour l'adaptation des communautĂ©s microbiennes Ă  la biodĂ©gradation du diuron a pu ĂȘtre mise en Ă©vidence. Ainsi, bien que la microflore des sĂ©diments prĂ©sente intrinsĂšquement la capacitĂ© Ă  s'adapter Ă  la biodĂ©gradation du diuron, cette facultĂ© est amĂ©liorĂ©e par le flux Ă©rosif, suggĂ©rant le transfert du potentiel Ă©purateur du compartiment terrestre au compartiment aquatique. L'Ă©volution de la capacitĂ© Ă©puratrice des sĂ©diments de la Morcille en rĂ©ponse Ă  l'interdiction d'usage du diuron a permis de mettre en Ă©vidence l'amĂ©lioration de la qualitĂ© chimique des eaux et la diminution des capacitĂ©s Ă©puratrices des sĂ©diments de la riviĂšre. Des populations microbiennes appartenant au genre Arthrobacter transformant le diuron en 3,4-dichloroaniline ont Ă©tĂ© isolĂ©es du sol de la zone tampon et des sĂ©diments. Un isolat bactĂ©rien appartenant au genre Achromobacter dĂ©gradant la 3,4-dichloroaniline a Ă©tĂ© isolĂ©. Le consortium synthĂ©tique formĂ© d'Arthrobacter sp. et d'Achromobacter sp. minĂ©ralise le diuron. Ces rĂ©sultats suggĂšrent que la communautĂ© bactĂ©rienne minĂ©ralisant le diuron dans le sol de la zone tampon et dans les sĂ©diments repose sur la coopĂ©ration mĂ©tabolique de ces deux populations

    Mécanismes d'évolution de pseudomonas sp. adp sous pression de sélection exercée par l'atrazine

    No full text
    L’atrazine est un pesticide qui est largement utilisĂ© dans le monde depuis une quarantaine d’annĂ©es. Son application rĂ©pĂ©tĂ©e aaboutit non seulement Ă  la contamination des eaux mais Ă©galement Ă  l’apparition de bactĂ©ries telluriques capables d’utiliserce xĂ©nobiotique comme source d’azote pour leur croissance. La caractĂ©risation des gĂšnes atz responsables de la dĂ©gradationde cette molĂ©cule a rĂ©vĂ©lĂ© qu’ils Ă©taient largement dispersĂ©s et trĂšs conservĂ©s au sein du monde bactĂ©rien traduisant ainsid’une Ă©volution et d’une dispersion rĂ©cente de ces gĂšnes, probablement concomitantes avec l’application d’atrazine dansl’environnemen
    • 

    corecore