97 research outputs found

    Electromagnetic Response of Extraordinary Transmission Plates Inspired on Babinet’s Principle

    Get PDF
    This chapter is devoted to polarization effects arisen from perforated metallic plates exhibiting extraordinary transmission (ET). Setting aside the state-of-the-art of perforated metallic plates, we show that by applying Babinet’s principle, subwavelength hole arrays (SHAs) arranged in rectangular lattice can further enhance its potential polarization response. Different perspectives are brought about to describe and understand the particular behaviour of self-complementariness-based SHAs: Babinet’s principle, equivalent circuit analysis, retrieved constitutive parameters, etc. Afterwards, we embark on the numerical analysis of stacked self-complementariness-based perforated plates. It is shown the potential of having a birefringent artificial medium behaving like negative and positive effective refractive index for the vertical and horizontal polarization, respectively. All these findings are experimentally demonstrated at millimetre-waves.Work supported by Spanish Government under contract Consolider “ENGINEERING METAMATERIALS” CSD2008-00066

    Designing a videoconference system for active networks

    Get PDF
    Active networks are receiving increasing attention due to their promises of great flexibility in tailoring services to applications. This capability stems from the exploitation of network devices whose behavior can be changed dynamically by applications, possibly using technologies and architectures originally conceived for mobile code systems. Notwithstanding the promises of active networks, real-world applications that clearly benefit by them are still missing. In this work we describe the design of a videoconference system conceived expressly for operation over active networks. The goal of this activity is to pinpoint the benefits that mobile code and active networks bring in this application domain and to provide insights for the exploitation of these concepts in other application domain

    Strong lateral displacement in polarization anisotropic extraordinary transmission metamaterial

    Get PDF
    UPNa. Departamento de Ingeniería Eléctrica y Electrónica. Laboratorio de Ondas Milimétricas y TeraherciosIn this paper, a deep numerical as well as experimental study of the anisotropy response of extraordinary transmission metamaterials constructed by stacking subwavelength hole arrays is presented. Two-dimensional (2D) dispersion diagrams for S- and P-polarization were obtained from simulation. From them, it was found that negative refraction can be obtained for the latter case for small angles of incidence. Additionally, it was found that double periodic and dielectric loaded hole arrays are optimal to enlarge the numerical aperture that leads to negative refraction. Several experiments are then presented in the V-band of the millimetre-wave range that show excellent agreement with the numerical calculations. Moreover, the richness of the anisotropic characteristic exhibited by the stacked hole array structure allows for designing structures with complex electromagnetic response other than solely negative refraction. Thus, the results presented here could be taken as a novel route to achieve exotic behaviour, such as negative refraction at other frequency ranges, like terahertz or the visible.This work was supported by the Spanish Government under the contract Consolider "Engineering Metamaterials" CSD2008-00066
    • 

    corecore