84 research outputs found

    Localization of Helicobacter spp. in the fundic mucosa of laboratory Beagle dogs: an ultrastructural study

    Get PDF
    In dogs Helicobacter spp. are found in all gastric regions usually localized in the surface mucus, gastric glands and parietal cells. The aim of this study was to detail the distribution of Helicobacter spp. in the fundic mucosa of asymptomatic Beagle dogs and their intracellular localization within parietal cells, in order to evaluate species-specific pathogenetic effects on gastric cells. The presence of Helicobacter spp. was investigated by immunohistochemistry, TEM, and PCR in the fundic mucosa of six Beagle dogs. Helicobacter spp. were found in all dogs examined, and H. bizzozeronii and H. felis were identified by PCR and confirmed by TEM. In the lumen of the fundic glands, co-localization was common. H. bizzozeronii was present in larger numbers than H. felis in both intraluminal and intraparietal localization. The amounts of H. bizzozeronii were similar in superficial and basal portions of the glands. H. felis was predominantly localized in the superficial portions of gastric glands but almost absent from the base. Within parietal cells, most Helicobacter organisms were intracanalicular, but intact and degenerate Helicobacter organisms were also visualized free in the cytoplasm or in secondary lysosomes. No specific degenerative lesions were found in infected parietal cells. Helicobacter organisms were also observed within macrophages in the lamina propria. In conclusion, there is a differential distribution of H. bizzozeronii and H. felis in the fundic mucosa of Beagle dogs, and their intracellular localization in parietal cells and macrophages suggests novel pathogenic scenarios for the development of immune response and maintenance of chronic gastritis in dogs

    the importance of an early alert from the microbiology laboratory and multidisciplinary collaboration during a suspected salmonellosis outbreak

    Get PDF
    Background and aims. Salmonellosis is one of the most common and widely distributed food-borne diseases. The increasing complexity and globalization of the food industry are causing an increase of some of these large-scale food-borne illnesses, thus there is a need for improvements in public health signal detection and communication streams between laboratories and regulatory agencies. The aim of this study is to show how the early reporting of salmonellosis cases directly from the Laboratory of Microbiology to the Local Health Service Infectious Diseases Office along with the prompt response of the ASL, and the rapid involvement of the Local Veterinary Prevention Department resulted in an improved individuation and investigation of a suspected food-borne outbreak with anomalous manifestation. Materials and methods. From August to November 2014 the early warning from the Laboratory of Microbiology regarding Salmonella spp. isolates with the identical serogroup and antibiotic resistance phenotype, allowed for prompt identification of a food-borne infection. Results and conclusions. The genotyping analysis suggested that over the period considered there was more than a single monophasic Salmonella typhimurium isolate: one responsible for the sporadic cases that occurred in September and October, and another in November

    <i>Besnoitia besnoiti</i> among cattle in insular and northwestern Italy: endemic infection or isolated outbreaks?

    Get PDF
    Background: Bovine besnoitiosis, caused by the apicomplexan Besnoitia besnoiti, is a chronic and debilitating disease considered as emerging in Europe. In Spain, Portugal and France it is endemic and foci of infection were recorded in Germany, Switzerland, Hungary, Greece and Italy. In Italy, cases of bovine besnoitiosis were registered both in imported and autochthonous cattle, and mostly in central regions; high seroprevalence was also revealed by an epidemiological survey performed in the southern part of the country. Aiming to update information on the disease in northwestern and insular areas of Italy, where data on bovine besnoitiosis were missing, a serosurvey was designed for the present study. Methods: Three thousand one hundred and forty bovine blood samples from both dairy and beef farms (n = 126) were collected in northwestern regions (Lombardy, Piedmont and Liguria) and in the island of Sardinia. Samples were analyzed by a standardized in-house ELISA and those resulted positive were re-tested by Western Blot (WB) for confirmation. On results obtained by both ELISA and WB, apparent (AP) and true prevalence (TP) were calculated at individual and herd levels. Further, a panel of sera resulted positive to ELISA was analyzed by IFAT. Results: A total of 712 animals (AP = 22.7%; TP = 18.8%) and 109 farms (AP = 86.5%; TP = 88.2%) showed a positive reaction in ELISA. Only ten (AP = 0.3%; TP = 0%) specimens proceeding from five farms (AP = 3.9%; TP = 1.7%) from Lombardy were confirmed positive to the WB, corresponding to two Holstein Friesian cows and eight beef cattle. IFAT showed a low sensitivity (44.4%) scoring positive in only four samples out of 9 positive to WB. Conclusions: The survey demonstrated that bovine besnoitiosis cannot still be considered endemic in whole Italy. In fact, independent foci of infection were registered only in Lombardy region. Therefore, a sanitary strategy aimed to increase control measures and to organize monitoring plans, by adequate diagnostic tools is necessary to avoid overestimation of B. besnoiti in Italy.</br

    A rapid and reliable method for early Legionella pneumophila identification and characterization in support of the epidemiology study

    Get PDF
    IntroductionLegionnaires’ disease is a severe pneumonia predominantly caused by Legionella pneumophila (Lp), whose major reservoirs are artificial water systems. As most human infections are caused by L. pneumophila serogroup 1 (Lp1), a reliable method for Lp distinction can be crucial for bacterial spread prevention. As the ability to withstand in environments and to cause the waterborne disease is strongly related to specific genes, the identification of virulent strains can be of great relevance to implement water environmental monitoring and to contain harmful outbreaks to public health. We aimed to test an assay for Lp identification among different Legionella species, and to determine the serogroups. Additionally, we investigated the carriage of virulence and antimicrobial resistance genes.MethodsA total of 90 Legionella spp. isolates identified by phenotypic tests were subjected to the designed quantitative PCR assay targeting specific mip for Lp, wzm for Lp1, pvcA and ahpD for biofilm production. Eleven serogroups were investigated in all our isolates tested positive for mip gene, subsequently analyzed for 12 virulence and 8 antimicrobial resistance genes.ResultsOnly the 70 Lp isolates were positive for mip. Out of 27 Lp isolates belonging to serogroup 1 based on agglutination test, 23 (85.2%) carried wzm. The presence of ahpD and pvcA was found in 94.3 and 98.6% of Lp isolates, respectively. By multiplex PCR, all 23 wzm-positive strains were confirmed as serogroup 1 that was the most predominant (33%). At least one virulence gene was detected in all Lp isolates. The most frequent gene was ispE (100%), followed by issD (96%), icmK and enhC (93%), cpxA (91%), rtxA2 (74%), lvhB8-B9 (61%), and prpA (54%). The other genes were less diffused in Lp strains (rtxA1, 44%; lvhB3-B4, 47%; pvcB, 27%; lvrE, 24%). Of the macrolide resistance genes, the ereA was found in 84% of Lp strains, while only 14 (20%) harbored the lpeAB among the efflux pump genes.ConclusionThe assays validated in this study enable the simultaneous Lp and Lp1 detection. The differentiation of Lp strains according to their virulence properties could be useful to predict the bacterial ability to survive and to cause the disease
    corecore