4 research outputs found

    Multinuclear Solid-State NMR and DFT Studies on Phosphanido-Bridged Diplatinum Complexes

    No full text
    Multinuclear (<sup>31</sup>P, <sup>195</sup>Pt, <sup>19</sup>F) solid-state NMR experiments on (<i>n</i>Bu<sub>4</sub>N)<sub>2</sub>[(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt­(μ-PPh<sub>2</sub>)<sub>2</sub>Pt­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>] (<b>1</b>), [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>Pt­(μ-PPh<sub>2</sub>)<sub>2</sub>Pt­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>]­(<i>Pt–Pt</i>) (<b>2</b>), and <i>cis</i>-Pt­(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>(PHPh<sub>2</sub>)<sub>2</sub> (<b>3</b>) were carried out under cross-polarization/magic-angle-spinning conditions or with the cross-polarization/Carr–Purcell Meiboom–Gill pulse sequence. Analysis of the principal components of the <sup>31</sup>P and <sup>195</sup>Pt chemical shift (CS) tensors of <b>1</b> and <b>2</b> reveals that the variations observed comparing the isotropic chemical shifts of <b>1</b> and <b>2</b>, commonly referred to as “ring effect”, are mainly due to changes in the principal components oriented along the direction perpendicular to the Pt<sub>2</sub>P<sub>2</sub> plane. DFT calculations of <sup>31</sup>P and <sup>195</sup>Pt CS tensors confirmed the tensor orientation proposed from experimental data and symmetry arguments and revealed that the different values of the isotropic shieldings stem from differences in the paramagnetic and spin–orbit contributions

    Oxidatively Induced P–O Bond Formation through Reductive Coupling between Phosphido and Acetylacetonate, 8‑Hydroxyquinolinate, and Picolinate Groups

    No full text
    The dinuclear anionic complexes [NBu<sub>4</sub>]­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>M′<sup>II</sup>(N<sup>∧</sup>O)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>. N<sup>∧</sup>O = 8-hydroxyquinolinate, hq; M = M′ = Pt <b>1</b>; Pd <b>2</b>; M = Pt, M′ = Pd, <b>3</b>. N<sup>∧</sup>O = <i>o</i>-picolinate, pic; M = Pt, M′ = Pt, <b>4</b>; Pd, <b>5</b>) are synthesized from the tetranuclear [NBu<sub>4</sub>]<sub>2</sub>[{(R<sub>F</sub>)<sub>2</sub>Pt­(μ-PPh<sub>2</sub>)<sub>2</sub>M­(μ-Cl)}<sub>2</sub>] by the elimination of the bridging Cl as AgCl in acetone, and coordination of the corresponding <i>N</i>,<i>O</i>-donor ligand (<b>1</b>, <b>4</b>, and <b>5</b>) or connecting the fragments “<i>cis</i>-[(R<sub>F</sub>)<sub>2</sub>M­(μ-PPh<sub>2</sub>)<sub>2</sub>]<sup>2–</sup>” and “M′(N<sup>∧</sup>O)” (<b>2</b> and <b>3</b>). The electrochemical oxidation of the anionic complexes <b>1</b>–<b>5</b> occurring under HRMS­(+) conditions gave the cations [(R<sub>F</sub>)<sub>2</sub>M­(μ-PPh<sub>2</sub>)<sub>2</sub>M′(N<sup>∧</sup>O)]<sup>+</sup>, presumably endowed with a M­(III),M′(III) core. The oxidative addition of I<sub>2</sub> to the 8-hydroxyquinolinate complexes <b>1</b>–<b>3</b> triggers a reductive coupling between a PPh<sub>2</sub> bridging ligand and the <i>N</i>,<i>O</i>-donor chelate ligand with formation of a P–O bond and ends up in complexes of platinum­(II) or palladium­(II) of formula [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(μ-I)­(μ-PPh<sub>2</sub>)­M′<sup>II</sup>(<i>P</i>,<i>N</i>-PPh<sub>2</sub>hq)], M = M′ = Pt <b>7</b>, Pd <b>8</b>; M = Pt, M′ = Pd, <b>9</b>. Complexes <b>7</b>–<b>9</b> show a new Ph<sub>2</sub>P-OC<sub>9</sub>H<sub>6</sub>N (Ph<sub>2</sub>P-hq) ligand bonded to the metal center in a <i>P</i>,<i>N</i>-chelate mode. Analogously, the addition of I<sub>2</sub> to solutions of the <i>o</i>-picolinate complexes <b>4</b> and <b>5</b> causes the reductive coupling between a PPh<sub>2</sub> bridging ligand and the starting <i>N</i>,<i>O</i>-donor chelate ligand with formation of a P–O bond, forming Ph<sub>2</sub>P-OC<sub>6</sub>H<sub>4</sub>NO (Ph<sub>2</sub>P-pic). In these cases, the isolated derivatives [NBu<sub>4</sub>]­[(Ph<sub>2</sub>P-pic)­(R<sub>F</sub>)­Pt<sup>II</sup>(μ-I)­(μ-PPh<sub>2</sub>)­M<sup>II</sup>(R<sub>F</sub>)­I] (M = Pt <b>10</b>, Pd <b>11</b>) are anionic, as a consequence of the coordination of the resulting new phosphane ligand (Ph<sub>2</sub>P-pic) as monodentate <i>P</i>-donor, and a terminal iodo group to the M atom. The oxidative addition of I<sub>2</sub> to [NBu<sub>4</sub>]­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>Pt<sup>II</sup>(acac)] (<b>6</b>) (acac = acetylacetonate) also results in a reductive coupling between the diphenylphosphanido and the acetylacetonate ligand with formation of a P–O bond and synthesis of the complex [NBu<sub>4</sub>]­[(R<sub>F</sub>)<sub>2</sub>Pt<sup>II</sup>(μ-I)­(μ-PPh<sub>2</sub>)­Pt<sup>II</sup>(Ph<sub>2</sub>P-acac)­I] (<b>12</b>). The transformations of the starting complexes into the products containing the P–O ligands passes through mixed valence M­(II),M′(IV) intermediates which were detected, for M = M′ = Pt, by spectroscopic and spectrometric measurements

    Formation of P–C Bond through Reductive Coupling between Bridging Phosphido and Benzoquinolinate Groups. Isolation of Complexes of the Pt(II)/Pt(IV)/Pt(II) Sequence

    No full text
    The rational synthesis of dinuclear asymmetric phosphanido derivatives of palladium and platinum­(II), [NBu<sub>4</sub>]­[(R<sub>F</sub>)<sub>2</sub>M­(μ-PPh<sub>2</sub>)<sub>2</sub>M′(κ<sup>2</sup>,<i>N</i>,<i>C</i>-C<sub>13</sub>H<sub>8</sub>N)] (R<sub>F</sub> = C<sub>6</sub>F<sub>5</sub>; M = M′ = Pt, <b>1</b>; M = Pt, M′ = Pd, <b>2</b>; M = Pd, M′ = Pt, <b>3</b>; M = M′ = Pd, <b>4</b>), is described. Addition of I<sub>2</sub> to <b>1</b>–<b>4</b> gives complexes [(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(μ-PPh<sub>2</sub>)­(μ-I)­Pd<sup>II</sup>{PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N)}] (M = M′ = Pt, <b>6</b>; M = Pt, M′ = Pd, <b>7</b>; M = M′ = Pd, <b>8</b>; M = Pd, M′ = Pt <b>10</b>) which contain the aminophosphane PPh<sub>2</sub>(C<sub>13</sub>H<sub>8</sub>N) ligand formed through a Ph<sub>2</sub>P/C<sup>∧</sup>N reductive coupling on the mixed valence M­(II)–M′(IV) [NBu<sub>4</sub>]­[(R<sub>F</sub>)<sub>2</sub>M<sup>II</sup>(μ-PPh<sub>2</sub>)<sub>2</sub>M′<sup>IV</sup>(κ<sup>2</sup>,<i>N</i>,<i>C</i>- C<sub>13</sub>H<sub>8</sub>N)­I<sub>2</sub>] complexes, which were identified for M<sup>II</sup> = Pd, M′<sup>IV</sup> = Pt (<b>9</b>), and isolated for M<sup>II</sup> = Pt, M′<sup>IV</sup> = Pt (<b>5</b>). Complex <b>5</b> showed an unusual dynamic behavior consisting in the exchange of two phenyl groups bonded to different P atoms, as well as a “through space” spin–spin coupling between <i>ortho</i>-F atoms of the pentafluorophenyl rings

    Sulfur-Assisted Phenyl Migration from Phosphorus to Platinum in PtW<sub>2</sub> and PtMo<sub>2</sub> Clusters Containing Thioether-Functionalized Short-Bite Ligands of the Bis(diphenylphosphanyl)amine-Type

    No full text
    The reactivity of dichloroplatinum­(II) complexes containing thioether-functionalized bis­(diphenyl­phosphanyl)­amines of formula (Ph<sub>2</sub>P)<sub>2</sub>N­(CH<sub>2</sub>)<sub>2</sub>SR (R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>, CH<sub>2</sub>Ph) toward group 6 carbonylmetalates Na­[M­(CO)<sub>3</sub>Cp] (M = Mo or W, Cp = cyclopentadienyl) was explored. Reactions with two or more equivalents of Na­[M­(CO)<sub>3</sub>Cp] (M = Mo or W) afforded the trinuclear complexes of general formula [PtPh­{M­(CO)<sub>3</sub>Cp}­{μ-<i>P</i>(Ph)­N­(CH<sub>2</sub>CH<sub>2</sub><i>S</i>R)­(<i>P</i>Ph<sub>2</sub>)-κ<sup>3</sup><i>P</i>,<i>P</i>,<i>S</i>}­M­(CO)<sub>2</sub>Cp] (<b>3</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>4</b> M = Mo, R = CH<sub>2</sub>Ph; <b>9</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>10</b> M = W, R = CH<sub>2</sub>Ph), the structure of which consists of a six-membered platinacycle condensed with a four-membered M–P–N–P cycle, together with small amounts of isomeric PtM<sub>2</sub> clusters [PtM<sub>2</sub>(CO)<sub>5</sub>Cp<sub>2</sub>­{(Ph<sub>2</sub>P)<sub>2</sub>N­(CH<sub>2</sub>CH<sub>2</sub>SR)-κ<sup>2</sup><i>P</i>,<i>P</i>}] (<b>5</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>6</b> M = Mo, R = CH<sub>2</sub>Ph; <b>11</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>12</b> M = W, R = CH<sub>2</sub>Ph) in which the ligand (Ph<sub>2</sub>P)<sub>2</sub>NR solely chelates the Pt atom or bridges an M–Pt bond as in [PtM<sub>2</sub>(CO)<sub>5</sub>Cp<sub>2</sub>­{μ-(Ph<sub>2</sub>P)<sub>2</sub>N­(CH<sub>2</sub>CH<sub>2</sub>SR)-κ<sup>2</sup><i>P</i>,<i>P</i>}] (<b>7</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>8</b> M = Mo, R = CH<sub>2</sub>Ph; <b>13</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>14</b> M = W, R = CH<sub>2</sub>Ph). The synthesis of the trinuclear complexes <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b> entails an unexpected P-phenyl bond cleavage reaction and phenyl migration onto Pt. When only 1 equiv of Na­[M­(CO)<sub>3</sub>Cp] (M = Mo or W) was used, the heterodinuclear products of monosubstitution [PtCl­{M­(CO)<sub>3</sub>Cp}­{Ph<sub>2</sub>PN­(R)­PPh<sub>2</sub>-<i>P</i>,<i>P</i>}] (<b>15</b> M = Mo, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>16</b> M = Mo, R = CH<sub>2</sub>Ph; <b>17</b> M = W, R = (CH<sub>2</sub>)<sub>5</sub>CH<sub>3</sub>; <b>18</b> M = W, R = CH<sub>2</sub>Ph) were obtained, which are the precursors to the bicyclic products <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b>, respectively. Density functional calculations were performed to study the thermodynamics of the formation of all the new complexes, to evaluate the relative stabilities of the isomeric chelated and bridged forms, and to trace the mechanism of formation of the phosphanido-bridged products <b>3</b>, <b>4</b>, <b>9</b>, and <b>10</b>. It was concluded that Pt­(II) complexes containing a <i>thioether</i>-functionalized short-bite ligand, [PtCl<sub>2</sub>{Ph<sub>2</sub>P­N­(R)­PPh<sub>2</sub>}], react with Na­[M­(CO)<sub>3</sub>Cp] to yield first heterodinuclear Pt–M and then heterotrinuclear PtM<sub>2</sub> complexes resulting from the activation of a P–C bond in one of the PPh<sub>2</sub> groups and phenyl migration to Pt. The critical role of an intramolecular thioether group was demonstrated
    corecore