2 research outputs found

    Groepsgedrag op de nanoschaal

    Get PDF
    Monodisperse gas microbubbles, encapsulated with a shell of photopolymerizable diacetylene lipids and phospholipids, were produced by microfluidic flow focusing, for use as ultrasound contrast agents. The stability of the polymerized shell microbubbles against both aggregation and gas dissolution under physiological conditions was studied. Polyethylene glycol (PEG) 5000, which was attached to the diacetylene lipids, was predicted by molecular theory to provide more steric hindrance against aggregation than PEG 2000, and this was confirmed experimentally. The polymerized shell microbubbles were found to have higher shell-resistance than nonpolymerizable shell microbubbles and commercially available microbubbles (Vevo MicroMarker). The acoustic stability under 7.5 MHz ultrasound insonation was significantly greater than that for the two comparison microbubbles. The acoustic stability was tunable by varying the amount of diacetylene lipid. Thus, our polymerized shell microbubbles are a promising platform for ultrasound contrast agents

    A Mass-Tagging Approach for Enhanced Sensitivity of Dynamic Cytokine Detection Using a Label-Free Biosensor

    No full text
    Monitoring cytokine release by cells allows the investigation of cellular response to specific external stimuli, such as pathogens or candidate drugs. Unlike conventional colorimetric techniques, label-free detection of cytokines enables studying cellular secretions in real time by eliminating additional wash and labeling steps after the binding step. However, label-free techniques that are based on measuring mass accumulation on a sensor surface are challenging for measuring small cytokines binding to much larger capture agents (usually antibodies) because the relative signal change is small. This problem is exacerbated when the capturing antibodies desorb from the surface, a phenomenon that almost inevitably occurs in immunoassays but is rarely accounted for. Here, we demonstrate a quantitative dynamic detection of interleukine-6 (IL-6), a pro-inflammatory cytokine, using an interferometric reflectance imaging sensor (IRIS). We improved the accuracy of the quantitative analysis of this relatively small protein (21 kDa) by characterizing the antibody desorption rate and compensating for the antibody loss during the binding experiment. By correcting for protein desorption, we achieved an analytical limit of detection at 19 ng/mL IL-6 concentration. We enhanced the sensitivity by 7-fold by using detection antibodies that recognize a different epitope of the cytokine. We demonstrate that these detection antibodies, which we call “mass tags”, can be used concurrently with the target analyte to eliminate an additional wash and binding step. Finally, we report successful label-free detection of IL-6 in cell culture medium (with 10% serum) with comparable signal to that obtained in PBS. This work is the first to report quantitative dynamic label-free detection of small protein in a complex biological fluid using IRIS
    corecore