329 research outputs found

    The Quantum Reverse Shannon Theorem based on One-Shot Information Theory

    Full text link
    The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel's entanglement assisted classical capacity. In this paper, we provide a new proof of this theorem, which has previously been proved by Bennett, Devetak, Harrow, Shor, and Winter. Our proof has a clear structure being based on two recent information-theoretic results: one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.Comment: 30 pages, 4 figures, published versio

    Direct sunlight facility for testing and research in HCPV

    Get PDF
    A facility for testing different components for HCPV application has been developed in the framework of “Fotovoltaico ad Alta Efficienza” (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules

    VALIDATION OF A MODIFIED MODEL OF TNBS-INDUCED COLITIS IN RATS. HOW TO INDUCE A CHEMICAL COLITIS IN RATS.

    Get PDF
    Background: there are no standard practice in the induction of colitis by 2,4,6-trinitrobenzene sulfonic (TNBS) acid. Usually, the repeated administration of TNBS is preferred, because it will result in a local Th1 response that has the characteristics of Crohn's disease. material and Methods: A total of 30 rats were randomized into two groups, consisting of a saline control group of ten rats and a TNBS groups of 20 rats. After the animals were anesthesized, 0,5 ml of either 0,9 % saline 8controls) or TNBS 50 mg/Kg dissolved in 50% ethanol were instilled into the colon through a rubber catheter. The experiment was repeated weekly for four weeks, then, the rats were killed at day 40, and the distal colon removed. results: At day 40, the bowel wall basically normal in the control group. In the TNBS group, the bowel lumen became narrow with tickened wall, and the mucosal surface presented adherent membrane with brown black, linear ulcers, proliferous lymphocites tissue, inflammatory granulomas and submucosal neutrophil infiltration. The median score of the severity of the colonic damage was 0 in the control group, and 4,75 (range 4-5) in the TNBS group; the mean weight of the rats was 180+35 g in the TNBS group, while it was 215+25 in the control group. Conclusions: The presented experiment is a cost-effective and safe method to induce Crohn-like colonic damage using a lower dose of TNBS, thus avoiding the risk of a massive loss of rats. This model is rather suitable for the assessment of the effects of potential therapeutic agent

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Epidemiology and Microbiology of Skin and Soft Tissue Infections: Preliminary Results of a National Registry

    Get PDF
    Skin and soft tissue infections (SSTIs) represent a wide range of clinical conditions characterized by a considerable variety of clinical presentations and severity. Their aetiology can also vary, with numerous possible causative pathogens. While other authors previously published analyses on several types of SSTI and on restricted types of patients, we conducted a large nationwide surveillance programme on behalf of the Italian Society of Infectious and Tropical Diseases to assess the clinical and microbiological characteristics of the whole SSTI spectrum, from mild to severe life-threatening infections, in both inpatients and outpatients. Twenty-five Infectious Diseases (ID) Centres throughout Italy collected prospectively data concerning both the clinical and microbiological diagnosis of patients affected by SSTIs via an electronic case report form. All the cases included in our database, independently from their severity, have been managed by ID specialists joining the study while SSTIs from other wards/clinics have been excluded from this analysis. Here, we report the preliminary results of our study, referring to a 12-month period (October 2016–September 2017). During this period, the study population included 254 adult patients and a total of 291 SSTI diagnoses were posed, with 36 patients presenting more than one SSTIs. The type of infection diagnosed, the aetiological micro-organisms involved and some notes on their antimicrobial susceptibilities were collected and are reported herein. The enrichment of our registry is ongoing, but these preliminary results suggest that further analysis could soon provide useful information to better understand the national epidemiologic data and the current clinical management of SSTIs in Italy

    Flavouring extra-virgin olive oil with aromatic and medicinal plants essential oils stabilizes oleic acid composition during photo-oxidative stress

    Get PDF
    Essential oils (EOs) from medicinal and aromatic plants (MAPs) are well-known as natural antioxidants. Their addition to extra-virgin olive oil (EVOO) can contribute to reducing fat oxidation. The main aim of this study was to improve both food shelf-life and aromatic flavour of EVOO, adding different EOs of Sicilian accessions of common sage, oregano, rosemary and thyme. The morphological and production characteristics of 40 accessions of MAPs were preliminarily assessed. EOs from the most promising accessions of MAPs were analysed by gas-chromatography and mass spectrometry. Photo-oxidative studies of the EOs were carried out and the determination of the EVOO fatty acids obtained from 4 Italian olive varieties was also made. EO content was on average 1.45% (v/w) for common sage, 3.97% for oregano, 1.42% for rosemary and 5.90% for thyme accessions. The highest average EO yield was found in thyme (172.70 kg ha1) whilst the lowest (9.30 kg ha1) in rosemary accessions. The chemical composition of EOs was very different in the four MAPs in the study. No significant change of oleic acid percentage was detected in the mixture of EVOO with EO samples. The results seem to highlight the presence of an antioxidant effect of EOs on EVOO

    Constraints for Service Contracts

    Full text link

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
    corecore