52 research outputs found

    The effect of an infra-acetabular screw for anatomically shaped three-dimensional plate or standard plate designs in acetabulum fractures: a biomechanical analysis

    Get PDF
    Background Various plate shapes and implant configurations are used for stabilization of acetabulum fractures via anterior approaches. Little is known about the biomechanical stability of a two-dimensionally shaped “conventional” plate (“J-Plate”—JP) in comparison to three-dimensionally shaped plate configurations (3DP). In addition, the augmentary effect of an infra-acetabular lag-screw (IACS) fixation for anterior column and posterior hemi-transverse acetabulum fractures has not been clarified in comparison of JP and 3DP constructs. This study analyzed the difference between the biomechanical stability of JP compared to 3DP and the role of an IACS in a standardized acetabular fracture model in a single-leg stance loading configuration. Methods In an artificial bone substitute pelvis model (Synbone© Malans, Switzerland), a typical and standardized fracture pattern (anterior column and posterior hemi-transverse) was created with osteotomy jigs. After anatomic reduction the stabilization was performed using JP or 3DP. Eight pelvises per group were axially loaded in a single-leg stance model up to 400 N. After the load cycle, an additional infra-acetabular screw was placed and the measurement repeated. Fragment displacement was recorded by an optical tracking system (Optitrack Prime 13®, Corvallis, USA). Results In the pure placement, 3DP provided significantly superior stability when compared to JP. Augmentation of JP by IACS increased the stability significantly, up to the level of 3DP alone, whereas augmentation of the 3DP did not result in further increase of overall stability. Conclusion The anatomically shaped plate alone provides a superior biomechanical stability in fixation of an anterior column and posterior hemi-transverse fracture model. In a JP fixation the augmentation by IACS provides similar strength as the anatomically shaped 3DP. By use of the anatomically shaped 3DP the need of a clinically risky application of IACS might be avoidable

    Tangential View and Intraoperative Three-Dimensional Fluoroscopy for the Detection of Screw-Misplacements in Volar Plating of Distal Radius Fractures

    Get PDF
    Background: Volar locking plate fixation has become the gold standard in the treatment of unstable distal radius fractures. Juxta-articular screws should be placed as close as possible to the subchondral zone, in an optimized length to buttress the articular surface and address the contralateral cortical bone. On the other hand, intra-articular screw misplacements will promote osteoarthritis, while the penetration of the contralateral bone surface may result in tendon irritations and ruptures. The intraoperative control of fracture reduction and implant positioning is limited in the common postero-anterior and true lateral two-dimensional (2D)-fluoroscopic views. Therefore, additional 2D-fluoroscopic views in different projections and intraoperative three-dimensional (3D) fluoroscopy were recently reported. Nevertheless, their utility has issued controversies. Objectives: The following questions should be answered in this study; 1) Are the additional tangential view and the intraoperative 3D fluoroscopy useful in the clinical routine to detect persistent fracture dislocations and screw misplacements, to prevent revision surgery? 2) Which is the most dangerous plate hole for screw misplacement? Patients and Methods: A total of 48 patients (36 females and 13 males) with 49 unstable distal radius fractures (22 x 23 A; 2 x 23 B, and 25 x 23 C) were treated with a 2.4 mm variable angle LCP Two-Column volar distal radius plate (Synthes GmbH, Oberdorf, Switzerland) during a 10-month period. After final fixation, according to the manufactures' technique guide and control of implant placement in the two common perpendicular 2D-fluoroscopic images (postero-anterior and true lateral), an additional tangential view and intraoperative 3D fluoroscopic scan were performed to control the anatomic fracture reduction and screw placements. Intraoperative revision rates due to screw misplacements (intra-articular or overlength) were evaluated. Additionally, the number of surgeons, time and radiation-exposure, for each step of the operating procedure, were recorded. Results: In the standard 2D-fluoroscopic views (postero-anterior and true lateral projection), 22 screw misplacements of 232 inserted screws were not detected. Based on the additional tangential view, 12 screws were exchanged, followed by further 10 screws after performing the 3D fluoroscopic scan. The most lateral screw position had the highest risk for screw misplacement (accounting for 45.5% of all exchanged screws). The mean number of images for the tangential view was 3 ± 2.5 images. The mean surgical time was extended by 10.02 ± 3.82 minutes for the 3D fluoroscopic scan. An additional radiation exposure of 4.4 ± 4.5seconds, with a dose area product of 39.2 ± 14.5 cGy/cm2 were necessary for the tangential view and 54.4 ± 20.9 seconds with a dose area product of 2.1 ± 2.2 cGy/cm2, for the 3D fluoroscopic scan. Conclusions: We recommend the additional 2D-fluoroscopic tangential view for detection of screw misplacements caused by overlength, with penetration on the dorsal cortical surface of the distal radius, predominantly observed for the most lateral screw position. The use of intraoperative 3D fluoroscopy did not become accepted in our clinical routine, due to the technical demanding and time consuming procedure, with a limited image quality so far

    A guideline for placement of an infra-acetabular screw based on anatomic landmarks via an intra-pelvic approach

    Get PDF
    Background: Due to demographic changes, more and more fracture patterns involving anterior acetabular structures occur. The infra-acetabular screw is seen a useful tool to increase stability in fixation of the acetabular cup. However, the exact position of this screw in relation to anatomic landmarks which are intra-operatively palpable via an intra-pelvic approach has not yet been determined. Methods: This biomorphometric experimental study references the ideal screw position of an infra-acetabular screw to anatomic landmarks palpable via an intra-pelvic approach. Therefore, we created a computer tomography-based 3D-model of 40 patients (20 women, 20 men) who received a computer tomography (CT) scan of the pelvis for any other reason than an acetabular fracture. Results: The entry point of an ideal infra-acetabular was of high constancy. At mean, this point was 10.2 mm caudal and 10.4 mm medial of the ilio-pubic/ilio-pectineal eminence. This reference is independent of age, gender, or physical dimensions. However, we found gender-dependent differences for the angulation and the length of the screw. Conclusions: This study provides a comprehensive guideline to determine the ideal entry point for an infra-acetabular screw via an intra-pelvic approach. The entry point is located 10.2 mm caudal and 10.4 mm medial of the ilio-pubic/ilio-pectineal eminence

    Effect of surgical experience and spine subspecialty on the reliability of the {AO} Spine Upper Cervical Injury Classification System

    Get PDF
    OBJECTIVE The objective of this paper was to determine the interobserver reliability and intraobserver reproducibility of the AO Spine Upper Cervical Injury Classification System based on surgeon experience (< 5 years, 5–10 years, 10–20 years, and > 20 years) and surgical subspecialty (orthopedic spine surgery, neurosurgery, and "other" surgery). METHODS A total of 11,601 assessments of upper cervical spine injuries were evaluated based on the AO Spine Upper Cervical Injury Classification System. Reliability and reproducibility scores were obtained twice, with a 3-week time interval. Descriptive statistics were utilized to examine the percentage of accurately classified injuries, and Pearson’s chi-square or Fisher’s exact test was used to screen for potentially relevant differences between study participants. Kappa coefficients (κ) determined the interobserver reliability and intraobserver reproducibility. RESULTS The intraobserver reproducibility was substantial for surgeon experience level (< 5 years: 0.74 vs 5–10 years: 0.69 vs 10–20 years: 0.69 vs > 20 years: 0.70) and surgical subspecialty (orthopedic spine: 0.71 vs neurosurgery: 0.69 vs other: 0.68). Furthermore, the interobserver reliability was substantial for all surgical experience groups on assessment 1 (< 5 years: 0.67 vs 5–10 years: 0.62 vs 10–20 years: 0.61 vs > 20 years: 0.62), and only surgeons with > 20 years of experience did not have substantial reliability on assessment 2 (< 5 years: 0.62 vs 5–10 years: 0.61 vs 10–20 years: 0.61 vs > 20 years: 0.59). Orthopedic spine surgeons and neurosurgeons had substantial intraobserver reproducibility on both assessment 1 (0.64 vs 0.63) and assessment 2 (0.62 vs 0.63), while other surgeons had moderate reliability on assessment 1 (0.43) and fair reliability on assessment 2 (0.36). CONCLUSIONS The international reliability and reproducibility scores for the AO Spine Upper Cervical Injury Classification System demonstrated substantial intraobserver reproducibility and interobserver reliability regardless of surgical experience and spine subspecialty. These results support the global application of this classification system

    Remodelling des juvenilen posttraumatisch deformierten distalen Radioulnargelenkes nach Sekundärkorrektur

    No full text

    Die komplexe posttraumatische Unterarmdeformität - 3D- Korrektur mittels CAD-Schablonen

    No full text

    Die komplexe posttraumatische Unterarmdeformität - 3D- Korrektur mittels CAD-Schablonen

    No full text
    Roll 493. Class Pix (Pictures) (Luke's & Severin's). Image 3 of 17. (19 June 1959) [PHO 1.493.25]The Boleslaus Lukaszewski (Father Luke) Photographs contain more than 28,000 images of Saint Louis University people, activities, and events between 1951 and 1970. The photographs were taken by Boleslaus Lukaszewski (Father Luke), a Jesuit priest and member of the University's Philosophy Department faculty

    Reliabiliät der intraoperativen 3D Fluoroskopie bei Versorgung distaler Radiusfrakturen

    No full text
    • …
    corecore