11,108 research outputs found

    IRIS thermal balance test within ESTEC LSS

    Get PDF
    The Italian Research Interim Stage (IRIS) thermal balance test was successfully performed in the ESTEC Large Space Simulator (LSS) to qualify the thermal design and to validate the thermal mathematical model. Characteristics of the test were the complexity of the set-up required to simulate the Shuttle cargo bay and allowing IRIS mechanism actioning and operation for the first time in the new LSS facility. Details of the test are presented, and test results for IRIS and the LSS facility are described

    Charge and Magnetic Flux Correlations in Chern-Simons Theory with Fermions

    Full text link
    Charge and magnetic flux bearing operators are introduced in Chern-Simons theory both in its pure form and when it is coupled to fermions. The magnetic flux creation operator turns out to be the Wilson line. The euclidean correlation functions of these operators are shown to be local and are evaluated exactly in the pure case and through an expansion in the inverse fermion mass whenever these are present. Physical states only occur in the presence of fermions and consist of composite charge-magnetic flux carrying states which are in general anyonic. The large distance behavior of the correlation functions indicates the condensation of charge and magnetic flux.Comment: Latex, 17 page

    Quantum global vortex strings in a background field

    Full text link
    We consider quantum global vortex string correlation functions, within the Kalb-Ramond framework, in the presence of a background field-strength tensor and investigate the conditions under which this yields a nontrivial contribution to those correlation functions. We show that a background field must be supplemented to the Kalb-Ramond theory, in order to correctly describe the quantum properties of the vortex strings. The explicit form of this background field and the associated quantum vortex string correlation function are derived. The complete expression for the quantum vortex creation operator is explicitly obtained. We discuss the potential applicability of our results in the physics of superfluids and rotating Bose-Einstein condensates.Comment: To appear in Journal of Physics A: Mathematical and Genera

    Supersymmetric free-damped oscillators: Adaptive observer estimation of the Riccati parameter

    Full text link
    A supersymmetric class of free damped oscillators with three parameters has been obtained in 1998 by Rosu and Reyes through the factorization of the Newton equation. The supplementary parameter is the integration constant of the general Riccati solution. The estimation of the latter parameter is performed here by employing the recent adaptive observer scheme of Besancon et al., but applied in a nonstandard form in which a time-varying quantity containing the unknown Riccati parameter is estimated first. Results of computer simulations are presented to illustrate the good feasibility of this approach for a case in which the estimation is not easily accomplished by other meansComment: 8 pages, 6 figure

    Unlocking innovation for net zero: Constraints, enablers, and firm-level transition strategies

    Get PDF
    Transition pathways for net zero encompass seemingly insurmountable innovation challenges for the scaling of less mature technological solutions such as hydrogen, materials substitution, and electrification as well as societal challenges to increase the market acceptability of these solutions. In this article, we present a conceptual framework which provides a firm-level perspective on net-zero innovation which has four unique characteristics, i.e. it is complex, systemic, urgent, and directional. The framework shows that the input, process, and output constraints that incumbent firms face in the net-zero transition can be tackled through four firm-level innovation levers – i.e. recombinative, collaborative, integrative, and socio-cognitive capabilities – which, in concert, act as enablers for firms to address these net-zero constraints. We conclude the article by outlining the framework’s main insights for firms’ innovation strategies for net zero and the policy implications. We also propose avenues for future research on net-zero innovation

    The HST Large Program on Omega Centauri. I. Multiple stellar populations at the bottom of the main sequence probed in NIR-Optical

    Full text link
    As part of a large investigation with Hubble Space Telescope to study the faintest stars within the globular cluster Omega Centauri, in this work we present early results on the multiplicity of its main sequence (MS) stars, based on deep optical and near-infrared observations. By using appropriate color-magnitude diagrams we have identified, for the first time, the two main stellar populations I, and II along the entire MS, from the turn-off towards the hydrogen-burning limit. We have compared the observations with suitable synthetic spectra of MS stars and conclude that the two MSs are consistent with stellar populations with different metallicity, helium, and light-element abundance. Specifically, MS-I corresponds to a metal-poor stellar population ([Fe/H]~-1.7) with Y~ 0.25 and [O/Fe]~0.30. The MS-II hosts helium-rich (Y~0.37-0.40) stars with metallicity ranging from [Fe/H]~-1.7 to -1.4. Below the MS knee (mF160W~19.5, our photometry reveals that each of the two main MSs hosts stellar subpopulations with different oxygen abundances, with very O-poor stars ([O/Fe]~-0.5) populating the MS-II. Such a complexity has never been observed in previous studies of M-dwarfs in globular clusters. A few months before the lunch of the James Webb Space Telescope, these results demonstrate the power of optical and near-infrared photometry in the study of multiple stellar populations in globular clusters.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    Charge pairing, superconducting transition and supersymmetry in high-temperature cuprate superconductors

    Full text link
    We propose a model for high-Tc_{c} superconductors, valid for 0δδSC0\leq\delta\leq\delta_{SC}, that includes both the spin fluctuations of the Cu++^{++} magnetic ions and of the O^{--} doped holes. Spin-charge separation is taken into account with the charge of the doped holes being associated to quantum skyrmion excitations (holons) of the Cu++^{++} spin background. The holon effective interaction potential is evaluated as a function of doping, indicating that Cooper pair formation is determined by the competition between the spin fluctuations of the Cu++^{++} background and of spins of the O^{--} doped holes (spinons). The superconducting transition occurs when the spinon fluctuations dominate, thereby reversing the sign of the interaction. At this point (δ=δSC\delta = \delta_{SC}), the theory is supersymmetric at short distances and, as a consequence, the leading order results are not modified by radiative corrections. The critical doping parameter for the onset of superconductivity at T=0 is obtained and found to be a universal constant determined by the shape of the Fermi surface. Our theoretical values for δSC\delta_{SC} are in good agreement with the experiment for both LSCO and YBCO.Comment: RevTex, 4 pages, no figure

    The State-of-the-Art HST Astro-Photometric Analysis of the core of \omega Centauri. III. The Main Sequence's Multiple Populations Galore

    Full text link
    We take advantage of the exquisite quality of the Hubble Space Telescope 26-filter astro-photometric catalog of the core of Omega Cen presented in the first paper of this series and the empirical differential-reddening correction presented in the second paper in order to distill the main sequence into its constituent populations. To this end, we restrict ourselves to the five most useful filters: the magic "trio" of F275W, F336W, and F438W, along with F606W and F814W. We develop a strategy for identifying color systems where different populations stand out most distinctly, then we isolate those populations and examine them in other filters where their sub-populations also come to light. In this way, we have identified at least 15 sub-populations, each of which has a distinctive fiducial curve through our 5-dimensional photometric space. We confirm the MSa to be split into two subcomponents, and find that both the bMS and the rMS are split into three subcomponents. Moreover, we have discovered two additional MS groups: the MSd (which has three subcomponents) shares similar properties with the bMS, and the MSe (which has four subcomponents), has properties more similar to those of the rMS. We examine the fiducial curves together and use synthetic spectra to infer relative heavy-element, light-element, and Helium abundances for the populations. Our findings show that the stellar populations and star formation history of Omega Cen are even more complex than inferred previously. Finally, we provide as a supplement to the original catalog a list that identifies for each star which population it most likely is associated with.Comment: 22 pages, 17 figures (most in lower res), 2 tables, accepted for publication in Ap

    Multi-wavelength Hubble Space Telescope photometry of stellar populations in NGC288

    Full text link
    We present new UV observations for NGC288, taken with the WFC3 detector on board the Hubble Space Telescope, and combine them with existing optical data from the archive to explore the multiple-population phenomenon in this globular cluster (GC). The WFC3's UV filters have demonstrated an uncanny ability to distinguish multiple populations along all photometric sequences in GCs, thanks to their exquisite sensitivity to the atmospheric changes that are tell-tale signs of second-generation enrichment. Optical filters, on the other hand, are more sensitive to stellar-structure changes related to helium enhancement. By combining both UV and optical data we can measure helium variation. We quantify this enhancement for NGC288 and find that its variation is typical of what we have come to expect in other clusters.Comment: 15 pages, 5 figures, accepted for publication in Ap
    corecore