3 research outputs found

    Digital Twins for Internal Transport Systems: Use Cases, Functions, and System Architecture

    Get PDF
    Internal transport systems are an essential part of intralogistics in production and distribution facilities. These are characterized by a variety of technologies as well as a multitude of interactions with other processes, such as warehouse, picking, and production processes. Therefore, resource planning and control of these systems is complex, especially for discontinuous conveyors. In this task, users can be supported by Digital Twins for decision-making, as they are suitable for investigating both future system states and possible actions. However, relevant use cases that are generally applicable across sectors as well as a generic system architecture for Digital Twins for resource planning and process control of in-plant transport systems have not yet been sufficiently investigated. In this paper, use cases are presented, relevant functions defined, and, finally, a generic functional and a logical reference architecture described. This is conducted with the design science in information systems research method together with a Systems Engineering approach. The use cases are determined at industrial partners of the research project TwInTraSys, which explores Digital Twins for the planning and control of internal transport systems. They are generalized and, thus, also applicable to other production and distribution facilities in different sectors. Further, the reference architecture can provide a basis for the successful implementation of the Digital Twin

    Simulation-based analysis of abstraction degrees in the context of Digital Twins for intralogistics transport systems

    Get PDF
    Current challenges in the planning and control of internal logistics systems are based on permanent changes in the requirements on the system, e.g., due to fluctuating order numbers or changes in their structure. For the representation and planning of in-house logistics processes, digital twins offer the possibility to verify different operational decisions such as predictive workforce scheduling. In this context, the quality of the results and their in-time presentation plays a decisive role. However, both target criteria are influenced by the detail-level of the digital representation. Based on a case study, this paper investigates the influence of the level of detail on the simulation runtime and result divergence to provide an evaluation for detail levels in the modelling of intralogistic transport systems
    corecore