29 research outputs found

    Tetracycline Removal through the Synergy of Catalysis and Photocatalysis by Novel NaYF4:Yb,Tm@TiO2-Acetylacetone Hybrid Core-Shell Structures

    Get PDF
    Novel hybrid core-shell structures, in which up-converting (UC) NaYF4:Yb,Tm core converts near-infrared (NIR) to visible (Vis) light via multiphoton up-conversion processes, while anatase TiO2-acetylacetonate (TiO2-Acac) shell ensures absorption of the Vis light through direct injection of excited electrons from the highest-occupied-molecular-orbital (HOMO) of Acac into the TiO2 conduction band (CB), were successfully synthesized by a two-step wet chemical route. Synthesized NaYF4:Yb,Tm@TiO2-Acac powders were characterized by X-ray powder diffraction, thermogravimetric analysis, scanning and transmission electron microscopy, diffuse-reflectance spectroscopy, Fourier transform infrared spectroscopy, and photoluminescence emission measurement. Tetracycline, as a model drug, was used to investigate the photocatalytic efficiencies of the core-shell structures under irradiation of reduced power Vis and NIR spectra. It was shown that the removal of tetracycline is accompanied by the formation of intermediates, which formed immediately after bringing the drug into contact with the novel hybrid core-shell structures. As a result, ~80% of tetracycline is removed from the solution after 6 h

    Caracterização e avaliação comparativa do desempenho fotocatalítico dos novos nanopós comerciais de TiO2

    Get PDF
    A fotocatálise heterogênea é um processo de foto-oxidação, o qual leva à decomposição e mineralização de gases e líquidos tóxicos e até só- lidos. Desde o fim de 1970, diferentes semicondutores têm sido investigados como fotocatalíticos potenciais, apontando-se o TiO2 como o ideal, devido a sua alta estabilidade química, relativamente baixo custo e alto poder de oxidação de buracos eletrônicos foto gerados. As vantagens intrínsecas do TiO2 nanocristalino para objetivos fotocatalíticos, têm sugerido com base em efeitos de confinamento quântico, o qual resulta no aumento da energia da banda proibida e conseqüentemente no deslocamento das bordas das bandas de valência e de condu- ção acarretando aumento do potencial redox do TiO2 , como também nas maiores áreas de superfície dos nanomateriais. Há inúmeras formas de obtenção de nanopós de TiO2 , no sentido de melhorar suas propriedades fotocatalíticas. Este estudo é dedicado à avaliação, primeiramente, do desempenho de degradação fotocatalítica dos novos nanopós TiO2 comerciais, de várias indústrias estrangeiras, em função da força de despoluição para gás tóxico NOx e diferentes pigmentos sintéticos. Antes do teste de degradação fotocatalítica, todos os nanopós foram caracterizados através da Difração de Raios-X, Microscopia Eletrônica de Varredura e adsorção de N2 . Todos os resultados de desempenho de degradação fotocatalítica dos novos nanopós de TiO2 comerciais, foram comparados com o TiO2 P-25 (Degussa), reconhecido por sua evidente propriedade fotocatalítica

    Desenvolvimento de revestimentos fotocatalíticos à base de TiO2 nanométricos pelo método de revestimento por imersão

    Get PDF
    O artigo descreve o estágio inicial do desenvolvimento de revestimentos fotocatalíticos à base de TiO2 nanométricos utilizando o processo de revestimento por imersão. Os resultados alcançados demonstram que é possível formar revestimentos aderentes, homogêneos e transparentes no espectro vísivil, mantendo os desempenhos fotocatalíticos dos pós precursores

    Effects of Fused Silica Addition on Thermal Expansion, Density, and Hardness of Alumix-231 Based Composites

    No full text
    Fused silica is a ceramic with promising applications as a filler in composites due to its near-zero thermal expansion. Substitution of heavy cast iron with Al-based light alloys is of utmost importance for the automotive industry. However, the high thermal expansion of Al alloys is an obstacle to their use in some applications. As such, ceramic fillers are natural candidates for tuning thermal expansion of Al-based matrices, due to their inherently moderate or low thermal expansion. Alumix-231 is a new promising alloy, and fused silica has never been used before to lower its thermal expansion. Composites with the addition of 5 to 20 vol.% of fused silica were developed through powder metallurgy, and the best results in terms of reduction of thermal expansion were reached after liquid phase sintering at 565 °C. Coefficients of thermal expansion as low as 13.70 and 12.73 × 10−6 °C−1 (between 25 and 400 °C) were reached for the addition of 15 and 20 vol.% of fused silica, a reduction of 29.9% and 34.8%, respectively, in comparison to neat Alumix-231. In addition, the density and hardness of these composites were not significantly affected, since they suffered only a small decrease, no higher than 6% and 5%, respectively. As such, the obtained results showed that Alumix-231/fused silica composites are promising materials for automotive applications

    TiO2-Acetylacetone as an Efficient Source of Superoxide Radicals under Reduced Power Visible Light: Photocatalytic Degradation of Chlorophenol and Tetracycline

    No full text
    Visible light-sensitive TiO2-based nanomaterials are widely investigated for photocatalytic applications under high power (≥300 W) UV and visible light. The formation of charge transfer complexes (CTCs) between bidentate ligands and nanocrystalline TiO2 promotes visible light absorption and constitutes a promising alternative for environmental remediation under reduced visible light power. However, the efficiency of photodegradation, the volatilization profile of bidentates, and the role of reactive oxidizing species (ROS) are not fully understood. In this study, thermogravimetric analyses coupled with mass spectroscopy (TGA-MS) were performed on TiO2-Acetylacetone (ACAC) CTC. TiO2-ACAC CTC calcined at 300 °C (TiO2-A300) was applied for the photocatalytic degradation of chlorophenol (4-CP) and tetracycline (TC) under low power visible light (26 W). Furthermore, the ROS scavengers isopropanol and benzoquinone were added for studying the photocatalytic role of •OH and •O2− radicals. The TGA-MS showed the release of ACAC fragments, such as ethyl ions and acetone, in the range between 150 °C and 265 °C, while between 300 °C and 450 °C only CO2 and H2O were released during oxidation of ACAC. The photocatalytic abatement of tetracycline (68.6%), performed by TiO2-A300, was ~two times higher than that observed for chlorophenol (31.3%) after 6 h, indicating a distinct participation of ROS in the degradation of these pollutants. The addition of the ROS scavenger revealed •O2− radicals as primarily responsible for the high efficiency of TiO2-ACAC CTC under reduced visible light. On the other hand, the •OH radicals are not efficiently generated in the CTC. Therefore, the development of heterostructures based on TiO2-ACAC CTC can increase the generation of ROS through coupling with semiconductors capable of generating •OH under visible light

    TiO<sub>2</sub>-Acetylacetone as an Efficient Source of Superoxide Radicals under Reduced Power Visible Light: Photocatalytic Degradation of Chlorophenol and Tetracycline

    No full text
    Visible light-sensitive TiO2-based nanomaterials are widely investigated for photocatalytic applications under high power (≥300 W) UV and visible light. The formation of charge transfer complexes (CTCs) between bidentate ligands and nanocrystalline TiO2 promotes visible light absorption and constitutes a promising alternative for environmental remediation under reduced visible light power. However, the efficiency of photodegradation, the volatilization profile of bidentates, and the role of reactive oxidizing species (ROS) are not fully understood. In this study, thermogravimetric analyses coupled with mass spectroscopy (TGA-MS) were performed on TiO2-Acetylacetone (ACAC) CTC. TiO2-ACAC CTC calcined at 300 °C (TiO2-A300) was applied for the photocatalytic degradation of chlorophenol (4-CP) and tetracycline (TC) under low power visible light (26 W). Furthermore, the ROS scavengers isopropanol and benzoquinone were added for studying the photocatalytic role of •OH and •O2− radicals. The TGA-MS showed the release of ACAC fragments, such as ethyl ions and acetone, in the range between 150 °C and 265 °C, while between 300 °C and 450 °C only CO2 and H2O were released during oxidation of ACAC. The photocatalytic abatement of tetracycline (68.6%), performed by TiO2-A300, was ~two times higher than that observed for chlorophenol (31.3%) after 6 h, indicating a distinct participation of ROS in the degradation of these pollutants. The addition of the ROS scavenger revealed •O2− radicals as primarily responsible for the high efficiency of TiO2-ACAC CTC under reduced visible light. On the other hand, the •OH radicals are not efficiently generated in the CTC. Therefore, the development of heterostructures based on TiO2-ACAC CTC can increase the generation of ROS through coupling with semiconductors capable of generating •OH under visible light

    YAG:Ce3+ nanostructured particles obtained via spray pyrolysis of polymeric precursor solution

    No full text
    Cerium-doped yttrium aluminum garnet (YAG:Ce3+) powder phosphor is synthesized via spray pyrolysis of polymeric precursor solution obtained by dissolving the corresponding nitrates in ethylenediaminetetraacetic acid (EDTA). Ultrasonically generated aerosol droplets are decomposed at 600 degrees C in argon atmosphere. Following the initial attempt in providing pure YAG:Ce3+, phase generation the particles were additionally thermally treated for 3 h in air at 1000 and 1100 degrees C. The powder morphology is followed with scanning electron microscopy (SEM), while inner particle structure is analysed by analytical and high-resolution transmission electron microscopy (TEM). Phase identification is performed by X-ray powder diffraction (XRPD) based on which a structural refinement through Rietveld method was done. The spherical submicronic particles have grained sub-structure comprising clustered garnet monocrystals sized below 100 nm. The YAG:Ce3+ emission shows wide peak in the range 470-600 nm with the maximum near 520 nm. (C) 2009 Elsevier Ltd. All rights reserved.11th Electroceramics Conference 2008, Sep 01-03, 2008, Univ Manchester, Manchester, Englan

    Natural Aging of Ethylene-Propylene-Diene Rubber under Actual Operation Conditions of Electrical Submersible Pump Cables

    No full text
    Ethylene-propylene-diene monomer (EPDM) rubbers used in electric submersible pump (ESP) cables were analyzed after being aged in actual operation conditions in oil wellbores. These rubbers constitute the insulation and jacket layers of the ESP cables. EPDM rubbers from four different cables operating during different time intervals (2 and 4.8 years) at different depths (from 760 to 2170 m) below sea level were studied. To verify the effects of the long exposure on the rubber performance, thermal analysis was performed to determine the thermal stability and activation energy of degradation. In addition, structural analysis, through vibrational spectroscopy and crosslinking fraction assessment, was carried out. The mechanical properties of the aged rubbers were inferred through the measurement of hardness, while the absorption of a service fluid was studied by gravimetry. The results showed only minor changes in the thermal, structural, mechanical and barrier properties of the EPDM-based ESP cable layers. It is suggested that the thermo-oxidation mechanism followed by chain scission does not have a role in the degradation of EPDM within the aged ESP cables, and no sign of variation of crosslink fractions has been encountered. Therefore, it was concluded that EPDM-based layers seem not to be weak links in the configuration of modern ESP systems
    corecore