9,315 research outputs found

    Efficacy of Two Common Methods of Application of Residual Insecticide for Controlling the Asian Tiger Mosquito, Aedes albopictus (Skuse), in Urban Areas

    Get PDF
    After its first introduction in the 1980's the Asian tiger mosquito, Aedes albopictus (Skuse), has spread throughout Southern Europe. Ae. albopictus is considered an epidemiologically important vector for the transmission of many viral pathogens such as the yellow fever virus, dengue fever and Chikungunya fever, as well as several filarial nematodes such as Dirofilaria immitis or D. repens. It is therefore crucial to develop measures to reduce the risks of disease transmission by controlling the vector populations. The aim of the study was to compare the efficacy of two application techniques (mist vs. stretcher sprayer) and two insecticides (Etox based on the nonester pyrethroid Etofenprox vs. Microsin based on the pyrethroid type II Cypermetrin) in controlling adult tiger mosquito populations in highly populated areas. To test the effect of the two treatments pre- and post-treatment human landing rate counts were conducted for two years. After one day from the treatment we observed a 100% population decrease in mosquito abundance with both application methods and both insecticides. However, seven and 14 days after the application the stretcher sprayer showed larger population reductions than the mist sprayer. No effect of insecticide type after one day and 14 days was found, while Etox caused slightly higher population reduction than Microsin after seven days. Emergency measures to locally reduce the vector populations should adopt adulticide treatments using stretcher sprayers. However, more research is still needed to evaluate the potential negative effects of adulticide applications on non-target organisms

    Application of the EXtrapolated Efficiency Method (EXEM) to infer the gamma-cascade detection efficiency in the actinide region

    Full text link
    The study of transfer-induced gamma-decay probabilities is very useful for understanding the surrogate-reaction method and, more generally, for constraining statistical-model calculations. One of the main difficulties in the measurement of gamma-decay probabilities is the determination of the gamma-cascade detection efficiency. In [Nucl. Instrum. Meth. A 700, 59 (2013)] we developed the Extrapolated Efficiency Method (EXEM), a new method to measure this quantity. In this work, we have applied, for the first time, the EXEM to infer the gamma-cascade detection efficiency in the actinide region. In particular, we have considered the 238U(d,p)239U and 238U(3He,d)239Np reactions. We have performed Hauser-Feshbach calculations to interpret our results and to verify the hypothesis on which the EXEM is based. The determination of fission and gamma-decay probabilities of 239Np below the neutron separation energy allowed us to validate the EXEM

    STONES SAWING SLUDGE AS BY-PRODUCT: characterization for a future recovery

    Get PDF
    The European Commission, as part of its Thematic Strategy on the prevention and recycling of waste, committed itself to tackle one of the issues around the waste definition, namely the distinction between waste and by-products. This definition has been outlined through the Communication on waste and by-product of the European Court of Justice (Brussels, 21.2.2007 COM(2007) 59 final COMMUNICATION FROM THE COMMISSION TO THE COUNCIL AND THE EUROPEAN PARLIAMENT). By-product is a substance or object, resulting from a production process, the primary aim of which is not the production of that item. By-products can come from a wide range of business sectors, and can have very different environmental impacts. If there is a possibility that the material is in fact not useable, because it does not meet the technical specifications that would be required for its use, then it should continue to be considered as a waste. The status of waste protects the environment from the potential consequences of this uncertainty. If it subsequently happens that a use is found for the waste in question then it will lose its status of waste and it will be considered a by-product. An incorrect classification could be the cause of environmental damage or unnecessary costs for business. For this purpose a characterization of sludge coming from different plants of stone processing was carried out for a better classification of the materials in view of a future recovery. The different stones cutting processes considered for this study are: gangsaw, diamond blade and diamond wire. The cut materials are granites, gneisses, and other stones mainly of silicatic nature. The tests performed on the sawing sludge are the following: particle size analysis, chemical analysis, wet magnetic separation, diffraction and SEM analysis. The study performed is useful for evaluating the possible reuses of the products coming from the magnetic separation: the metal fraction, and the mineral one. In order to avoid a subsequent environmental degradation and to promote a technology innovation (sustainability and circular economy) a proactive waste management strategy trying to optimize on the one hand the processing to obtain reduced waste and the other to improve the process to obtain two reusable by-products was considered

    Sequential fissions of heavy nuclear systems

    Get PDF
    In Xe+Sn central collisions from 12 to 20 MeV/A measured with the INDRA 4Ï€\pi multidetector, the three-fragment exit channel occurs with a significant cross section. In this contribution, we show that these fragments arise from two successive binary splittings of a heavy composite system. Strong Coulomb proximity effects are observed in the three-fragment final state. By comparison with Coulomb trajectory calculations, we show that the time scale between the consecutive break-ups decreases with increasing bombarding energy, becoming compatible with quasi-simultaneous multifragmentation above 18 MeV/A.Comment: 6 pages, 5 figures, contribution to conference proceedings of the Fifth International Workshop on Nuclear fission and Fission-Product Spectroscop

    Evidence of a pressure-induced metallization process in monoclinic VO2_2

    Full text link
    Raman and combined trasmission and reflectivity mid infrared measurements have been carried out on monoclinic VO2_2 at room temperature over the 0-19 GPa and 0-14 GPa pressure ranges, respectively. The pressure dependence obtained for both lattice dynamics and optical gap shows a remarkable stability of the system up to P*∼\sim10 GPa. Evidence of subtle modifications of V ion arrangements within the monoclinic lattice together with the onset of a metallization process via band gap filling are observed for P>>P*. Differently from ambient pressure, where the VO2_2 metal phase is found only in conjunction with the rutile structure above 340 K, a new room temperature metallic phase coupled to a monoclinic structure appears accessible in the high pressure regime, thus opening to new important queries on the physics of VO2_2.Comment: 5 pages, 3 figure

    Vibrational spectrum of solid picene (C_22H_14)

    Full text link
    Recently, Mitsuhashi et al., have observed superconductivity with transition temperature up to 18 K in potassium doped picene (C22H14), a polycyclic aromatic hydrocarbon compound [Nature 464 (2010) 76]. Theoretical analysis indicate the importance of electron-phonon coupling in the superconducting mechanisms of these systems, with different emphasis on inter- and intra-molecular vibrations, depending on the approximations used. Here we present a combined experimental and ab-initio study of the Raman and infrared spectrum of undoped solid picene, which allows us to unanbiguously assign the vibrational modes. This combined study enables the identification of the modes which couple strongly to electrons and hence can play an important role in the superconducting properties of the doped samples

    Nonequilibrium steady states in fluids of platelike colloidal particles

    Full text link
    Nonequilibrium steady states in an open system connecting two reservoirs of platelike colloidal particles are investigated by means of a recently proposed phenomenological dynamic density functional theory [M. Bier and R. van Roij, Phys. Rev. E 76, 021405 (2007)]. The platelike colloidal particles are approximated within the Zwanzig model of restricted orientations, which exhibits an isotropic-nematic bulk phase transition. Inhomogeneities of the local chemical potential generate a diffusion current which relaxes to a nonvanishing value if the two reservoirs coupled to the system sustain different chemical potentials. The relaxation process of initial states towards the steady state turns out to comprise two regimes: a smoothening of initial steplike structures followed by an ultimate relaxation of the slowest diffusive mode. The position of a nonequilibrium interface and the particle current of steady states depend nontrivially on the structure of the reservoirs due to the coupling between translational and orientational degrees of freedom of the fluid
    • …
    corecore