133 research outputs found

    Virtual Element Method for fourth order problems: L2−L^2-estimates

    Full text link
    We analyse the family of C1C^1-Virtual Elements introduced in \cite{Brezzi:Marini:plates} for fourth-order problems and prove optimal estimates in L2L^2 and in H1H^1 via classical duality arguments

    A simple preconditioner for a discontinuous Galerkin method for the Stokes problem

    Full text link
    In this paper we construct Discontinuous Galerkin approximations of the Stokes problem where the velocity field is H(div)-conforming. This implies that the velocity solution is divergence-free in the whole domain. This property can be exploited to design a simple and effective preconditioner for the final linear system.Comment: 27 pages, 4 figure

    L2−estimates for the DG IIPG-0 scheme

    Get PDF
    We discuss the optimality in L2 of a variant of the Incomplete Discontinuous Galerkin Interior Penalty method (IIPG) for second order linear elliptic problems. We prove optimal estimate, in two and three dimensions, for the lowest order case under suitable regularity assumptions on the data and on the mesh. We also provide numerical evidence, in one dimension, of the necessity of the regularity assumptions

    Virtual Elements on polyhedra with a curved face

    No full text
    We revisit classical Virtual Element approximations on polygonal and polyhedral decompositions. We also recall the treatment proposed for dealing with decompositions into polygons with curved edges. In the second part of the paper we introduce a couple of new ideas for the construction of VEM-approximations on domains with curved boundary, both in two and three dimensions. The new approach looks promising, although sound numerical tests should be made to validate the efficiency of the method

    Implementation of the stabilized three-field formulation

    No full text

    Error estimates for the three-field formulation with bubble stabilization

    No full text
    In this paper we prove convergence and error estimates for the so-called 3-field formulation using piecewise linear finite elements stabilized with boundary bubbles. Optimal error bounds are proved in L^2 and in the broken H^1 norm for the internal variable u, and in suitable weighted L^2 norms for the other two interface variable

    Subgrid phenomena and numerical schemes

    No full text

    A Family of Discontinuous Galerkin Finite Elements for the Reissner–Mindlin plate

    No full text
    We develop a family of locking-free elements for the Reissner–Mindlin plate using Discontinuous Galerkin (DG) techniques, one for each odd degree, and prove optimal error estimates. A second family uses conforming elements for the rotations and nonconforming elements for the transverse displacement, generalizing the element of Arnold and Falk to higher degree. KEY WORDS: Discontinuous Galerkin; Reissner–Mindlin plates; locking-free finite elements
    • …
    corecore