33 research outputs found

    Microcapteurs implantables pour le suivi neurochimique de fonctionnement du cerveau

    No full text
    Les microcapteurs implantables sont des outils de choix pour l étude du système nerveux central. Ils permettent d analyser en temps réel la composition du milieu interstitiel du cerveau et les variations de concentration de neurotransmetteurs et de substrats métaboliques dans l espace extracellulaire. La procédure d immobilisation de l enzyme sur l électrode est une étape cruciale déterminant les performances du biocapteur. Nous avons développé une méthode d immobilisation simple, non-toxique et peu chère en utilisant une molécule de poly(ethyleneglycol) diglycidyl éther (PEGDE) qui répond bien aux critères des applications cliniques. La méthode a été étudiée et optimisée sur trois enzyme: la Glucose oxydase, la D-amino acide oxydase et la Glutamate oxydase. Les capteurs développés se caractérisent par une forte sensibilité et un temps de réponse suffisamment court pour la détection des événements biologiques en temps réel. Les capteurs à base de PEGDE ont démontrés une bonne stabilité dans le temps et leur capacité de suivre en temps réel la variation de concentration de glucose dans le SNC du rat suite à l injection d insuline ou de glucose. Nous avons également adapté les méthodes d immobilisation d enzyme les plus utilisées dans le domaine des neurosciences: immobilisation par réticulation dans des vapeurs de Glutaraldéhyde ou par PEGDE, piégeage dans une matrice de sol-gel ou de polypyrrole dérivé, ou immobilisation dans une matrice d hydrogel. Nous avons comparé les biocapteurs ainsi obtenus en termes de sensibilité, de stabilité in vivo, de temps de réponse et aussi de toxicité. Cette étude comparative nous a permis de conclure que le PEGDE représente un procédé d immobilisation optimal car il ne demande pas de synthèse organique, contrairement à l hydrogel, il n est pas toxique contrairement au glutaraldehyde et il assure une immobilisation covalente plus stable que le piégeage dans des sol-gel ou polypyrrole. Cette étude comparative a mis également en évidence l effet de la procédure de fixation de l enzyme sur la spécificité du biocapteur. Nous avons montré que l immobilisation par glutaraldehyde provoque une importante perte de sélectivité de l enzyme. Quant au PEGDE, son immobilisation est assez douce pour préserver la spécificité naturelle de l enzyme. Nous avons montré que la procédure d immobilisation a un impact important sur la quantification des molécules dans les échantillons biologiques et in vivo. La validité des mesures sur nos capteurs a été contrôlée par HPLC ou électrophorèse capillaire. Nous avons également développé des sondes multisensibles en utilisant les techniques de microfabrication sur silicium. Le dispositif comporte une aiguille de 6mm en longueur, 100 m en largeur et 50 m en épaisseur. Elle porte trois électrodes de taille 40x200 m. Ces dispositifs, optimisés pour réduire les effets d interférence entre les électrodes, ont été pour le suivi simultané de glucose et lactate dans le SNC de rats anesthésiés.Identification, monitoring and quantification of biomolecules in the CNS is a field of growing interest for identifying biomarkers of neurological diseases. In this thesis, silicon needle-shaped multi-molecules sensing microprobes were developed. Our microelectrode array design comprises a needle length of 6mm with 100x50 m2 cross-section bearing three platinum electrodes with a size of 40x200 m and 200 m spacing between them. We have used these microprobes for simultaneous glucose and lactate monitoring, using the third electrode for control of non-specific current variations. Local microdroplet protein deposition on the electrode surface was achieved using a pneumatic picopump injection system. Enzyme immobilization on the electrode surface is a key step in microelectrode biosensor fabrication. We have developed a simple, low cost, non-toxic enzyme immobilization method employing poly(ethyleneglycol) diglycidyl ether (PEGDE). Successful biosensor fabrication was demonstrated with glucose oxidase, D-amino acid oxidase, and glutamate oxidase. We found that these biosensors exhibited high sensitivity and short response time sufficient for observing biological events in vivo on a second-by-second timescale. PEGDE-based biosensors demonstrated an excellent long-term stability and reliably monitored changes in brain glucose levels induced by sequential administration of insulin and glucose solution. We then carried out a comparative study of five enzyme immobilization procedures commonly used in Neuroscience: covalent immobilization by cross-linking using glutaraldehyde, PEGDE, or a hydrogel matrix and enzyme entrapment in a sol-gel or polypyrrole-derived matrices. Enzymatic microelectrodes prepared using these different procedures were compared in terms of sensitivity, response time, linear range, apparent Michaelis-Menten constant, stability and selectivity. We conclude that PEGDE and sol-gel techniques are potentially promising procedures for in vivo laboratory studies. The comparative study also revealed that glutaraldehyde significantly decreased enzyme selectivity while PEGDE preserved it. The effects that immobilization can have on enzyme substrate specificity, produce dramatic consequences on glutamate detection in complex biological samples and in the CNS. Our biosensor s results were systematically controlled by HPLC or capillary electrophoresis. The highly selective PEGDE-based biosensors allowed accurate measurements glutamate concentrations in the anesthetized and awaked rats at physiological conditions and under pharmacological and electrical stimulations. The microfabricated multielectrodes based on silicon needles coupled to the simple, non-toxic and mild immobilization method based on PEGDE, open new possibilities for specific neurotransmitter detection in the central nervous system and the study of cell-cell communication in vivo.VILLEURBANNE-DOC'INSA-Bib. elec. (692669901) / SudocSudocFranceF

    IMPLANTABLE ELECTRODES FOR ELECTROCHEMICAL DETECTION

    No full text
    Current Assignee Institut National de la Sante et de la Recherche Medicale INSERM Institut National des Sciences Appliquées INSA de Lyon Centre National de la Recherche Scientifique CNRS Université Claude Bernard Lyon 1 (UCBL) École Centrale de Lyon ECLThe present application relates to a process for manufacturing an electrode for electrochemical detection for detecting an analyte, said process comprising depositing, on a carrier filament, a metal layer able to catalyse the oxidation of an oxidisable compound, said deposition being carried out by a vacuum deposition process. The process may also comprise depositing, on the metallised filament, an enzymic layer able to catalyse the degradation of said analyte while generating said oxidisable compound. The invention also relates to an electrode manufactured using this process, to an associated device, and to a method for electrochemically detecting an analyte, in particular O2

    MONITORING BRAIN INJURY WITH MICROELECTRODE BIOSENSORS

    No full text
    International audienc

    Platinized Carbon Fibers as an Electrochemical Substrate to Obtain Minimally Invasive Microelectrode Biosensors for Brain Monitoring

    No full text
    International audienceLocal neurochemical disturbances occurring after brain injury provide important information about the ability of the nervous tissue to recover from the initial insult. Monitoring the chemical composition of the brain interstitial fluid is therefore an important challenge for both pre-clinical and clinical research on brain injury. Microelectrode biosensors are a promising technique to monitor the brain with a temporal resolution in the order of seconds. Here, ultramicroelectrodes based on platinized carbon fibers were fabricated to obtain biosensors with less than 15 µm external diameter. Platinization was achieved by sputtering a 10 nm Cr adhesion layer followed by 100 nm of platinum. Platinized carbon fibers were then encased in a glass micropipette and covered with electropolymerized poly-phenylenediamine for selectivity, and covalently immobilized oxidase enzymes (glucose oxidase, lactate oxidase, D-amino acid oxidase or glutamate oxidase). After implantation in the rat parietal cortex, such biosensors detected (1) a lower basal lactate concentration, (2) a slower diffusion of glucose and D-serine through the blood brain barrier, and (3) a smaller lactate response to cortical spreading depolarization. The concentrations estimated by the small biosensors based on platinized carbon fibers, and their dynamic changes across time, were significantly different from the estimates provided by more conventional biosensors with 100 µm external diameter. We conclude that such biosensors avoid major mechanical injury to blood vessels, preserve the blood brain barrier at the site of implantation, and therefore, provide more accurate measurements from the brain interstitial flui
    corecore