3 research outputs found

    Optimal dosing regimen of CD73 blockade improves tumor response to radiotherapy through iCOS downregulation

    No full text
    Background Irradiation (IR) and immune checkpoint inhibitor (ICI) combination is a promising treatment modality. However, local and distance treatment failure and resistance can occur. To counteract this resistance, several studies propose CD73, an ectoenzyme, as a potential target to improve the antitumor efficiency of IR and ICI. Although CD73 targeting in combination with IR and ICI has shown attractive antitumor effects in preclinical models, the rationale for CD73 targeting based on CD73 tumor expression level deserves further investigations.Methods Here we evaluated for the first time the efficacy of two administration regimens of CD73 neutralizing antibody (one dose vs four doses) in combination with IR according to the expression level of CD73 in two subcutaneous tumor models expressing different levels of CD73.Results We showed that CD73 is weakly expressed by MC38 tumors even after IR, when compared with the TS/A model that highly expressed CD73. Treatment with four doses of anti-CD73 improved the TS/A tumor response to IR, while it was ineffective against the CD73 low-expressing MC38 tumors. Surprisingly, a single dose of anti-CD73 exerted a significant antitumor activity against MC38 tumors. On CD73 overexpression in MC38 cells, four doses of anti-CD73 were required to improve the efficacy of IR. Mechanistically, a correlation between a downregulation of iCOS expression in CD4+ T cells and an improved response to IR after anti-CD73 treatment was observed and iCOS targeting could restore an impaired benefit from anti-CD73 treatment.Conclusions These data emphasize the importance of the dosing regimen for anti-CD73 treatment to improve tumor response to IR and identify iCOS as part of the underlying molecular mechanisms. Our data suggest that the selection of appropriate dosing regimen is required to optimize the therapeutic efficacy of immunotherapy–radiotherapy combinations

    CCR2-Dependent Recruitment of Tregs and Monocytes Following Radiotherapy Is Associated with TNFα-Mediated Resistance

    No full text
    International audienceRadiotherapy (RT) represents one of the main anticancer approaches for the treatment of solid tumors. Beyond the expected direct effects of RT on tumor cells, evidence supporting the importance of an immune response to RT is growing. The balance between RT-mediated immunogenic and tolerogenic activity is ill-defined and deserves more attention. Herein, a murine model of head and neck squamous cell carcinoma was used to demonstrate that RT upregulated CCL2 chemokine production in tumor cells, leading to a CCR2-dependent accumulation of tumor necrosis factor alpha (TNFα)-producing monocytes and CCR2+ regulatory T cells (Treg). This corecruitment was associated with a TNFα-dependent activation of Tregs, dampening the efficacy of RT. Our results highlight an unexpected cross-talk between innate and adaptive immune system components and indicate CCL2/CCR2 and TNFα as potential clinical candidates to counterbalance the radioprotective action of monocyte-derived cells and Tregs, paving the way for potent combined radioimmunotherapies

    TGFβ receptor inhibition unleashes interferon-β production by tumor-associated macrophages and enhances radiotherapy efficacy

    No full text
    International audienceBackground Transforming growth factor-beta (TGFβ) can limit the efficacy of cancer treatments, including radiotherapy (RT), by inducing an immunosuppressive tumor environment. The association of TGFβ with impaired T cell infiltration and antitumor immunity is known, but the mechanisms by which TGFβ participates in immune cell exclusion and limits the efficacy of antitumor therapies warrant further investigations. Methods We used the clinically relevant TGFβ receptor 2 (TGFβR2)-neutralizing antibody MT1 and the small molecule TGFβR1 inhibitor LY3200882 and evaluated their efficacy in combination with RT against murine orthotopic models of head and neck and lung cancer. Results We demonstrated that TGFβ pathway inhibition strongly increased the efficacy of RT. TGFβR2 antibody upregulated interferon beta expression in tumor-associated macrophages within the irradiated tumors and favored T cell infiltration at the periphery and within the core of the tumor lesions. We highlighted that both the antitumor efficacy and the increased lymphocyte infiltration observed with the combination of MT1 and RT were dependent on type I interferon signaling. Conclusions These data shed new light on the role of TGFβ in limiting the efficacy of RT, identifying a novel mechanism involving the inhibition of macrophage-derived type I interferon production, and fostering the use of TGFβR inhibition in combination with RT in therapeutic strategies for the management of head and neck and lung cancer
    corecore