17 research outputs found

    Functional properties of resting state networks in healthy full-term newborns.

    Get PDF
    Objective, early, and non-invasive assessment of brain function in high-risk newborns is critical to initiate timely interventions and to minimize long-term neurodevelopmental disabilities. A prerequisite to identifying deviations from normal, however, is the availability of baseline measures of brain function derived from healthy, full-term newborns. Recent advances in functional MRI combined with graph theoretic techniques may provide important, currently unavailable, quantitative markers of normal neurodevelopment. In the current study, we describe important properties of resting state networks in 60 healthy, full-term, unsedated newborns. The neonate brain exhibited an efficient and economical small world topology: densely connected nearby regions, sparse, but well integrated, distant connections, a small world index greater than 1, and global/local efficiency greater than network cost. These networks showed a heavy-tailed degree distribution, suggesting the presence of regions that are more richly connected to others (\u27hubs\u27). These hubs, identified using degree and betweenness centrality measures, show a more mature hub organization than previously reported. Targeted attacks on hubs show that neonate networks are more resilient than simulated scale-free networks. Networks fragmented faster and global efficiency decreased faster when betweenness, as opposed to degree, hubs were attacked suggesting a more influential role of betweenness hub in the neonate network

    Altered Cerebellar Biochemical Profiles in Infants Born Prematurely

    Get PDF
    This study aims to compare the cerebellar biochemical profiles in preterm (PT) infants evaluated at term equivalent age (TEA) and healthy full-term newborns using proton magnetic resonance spectroscopy (1H-MRS). We explore the associations between altered cerebellar metabolite profiles and brain injury topography, severity of injury, and prematurity-related clinical complications. We prospectively collected high quality 1H-MRS in 59 premature infants born ≤32 weeks and 61 healthy full term controls. 1H-MRS data were processed using LCModel software to calculate absolute metabolite concentration for N-acetyl-aspartate (NAA), choline (Cho) and creatine (Cr). PT infants had significantly lower cerebellar NAA (p \u3c 0.025) and higher Cho (p \u3c 0.001) at TEA when compared to healthy controls. Creatine was not different between the two groups. The presence of cerebellar injury was consistently associated with reduced concentrations for NAA, Cho, and Cr. Postnatal infection was negatively associated with NAA and Cr (p \u3c 005), while cerebral cortical brain injury severity was inversely associated with both Cho and Cr (p \u3c 0.01). We report for the first time that premature birth is associated with altered cerebellar metabolite profiles when compared to term born controls. Infection, cerebellar injury and supratentorial injury are important risk factors for impaired preterm cerebellar biochemistry

    Regional microstructural organization of the cerebral cortex is affected by preterm birth.

    Get PDF
    Objectives: To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design: We prospectively enrolled very preterm infants (gestational age (GA) at birth\u3c32 \u3eweeks; birthweight\u3c1500 \u3eg) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results: We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions: Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants

    Regional microstructural organization of the cerebral cortex is affected by preterm birth

    No full text
    Objectives: To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design: We prospectively enrolled very preterm infants (gestational age (GA) at birth<32 weeks; birthweight<1500 g) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results: We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions: Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants. Keywords: Prematurity, Cerebral cortex, Microstructural organization, Diffusion tension imagin

    Third Trimester Brain Growth in Preterm Infants Compared With In Utero Healthy Fetuses

    No full text
    BACKGROUND AND OBJECTIVES: Compared with term infants, preterm infants have impaired brain development at term-equivalent age, even in the absence of structural brain injury. However, details regarding the onset and progression of impaired preterm brain development over the third trimester are unknown. Our primary objective was to compare third-trimester brain volumes and brain growth trajectories in ex utero preterm infants without structural brain injury and in healthy in utero fetuses. As a secondary objective, we examined risk factors associated with brain volumes in preterm infants over the third-trimester postconception. METHODS: Preterm infants born before 32 weeks of gestational age (GA) and weighing <1500 g with no evidence of structural brain injury on conventional MRI and healthy pregnant women were prospectively recruited. Anatomic T2-weighted brain images of preterm infants and healthy fetuses were parcellated into the following regions: cerebrum, cerebellum, brainstem, and intracranial cavity. RESULTS: We studied 205 participants (75 preterm infants and 130 healthy control fetuses) between 27 and 39 weeks’ GA. Third-trimester brain volumes were reduced and brain growth trajectories were slower in the ex utero preterm group compared with the in utero healthy fetuses in the cerebrum, cerebellum, brainstem, and intracranial cavity. Clinical risk factors associated with reduced brain volumes included dexamethasone treatment, the presence of extra-axial blood on brain MRI, confirmed sepsis, and duration of oxygen support. CONCLUSIONS: These preterm infants exhibited impaired third-trimester global and regional brain growth in the absence of cerebral/cerebellar parenchymal injury detected by using conventional MRI
    corecore