4 research outputs found

    Morphological Changes in Neural Progenitors Derived from Human Induced Pluripotent Stem Cells and Transplanted into the Striatum of a Parkinson's Disease Rat Model

    Get PDF
    Introduction. Development of cell therapy for Parkinson's disease (PD) requires protocols based on transplantation of neurons derived from human induced pluripotent stem cells (hiPSCs) into the damaged area of the brain. Objective: to characterize neurons transplanted into a rat brain and evaluate neural transplantation efficacy using a PD animal model. Materials and methods. Neurons derived from hiPSCs (IPSRG4S line) were transplanted into the striatum of rats after intranigral injection of 6-hydroxydopamine (6-OHDA). Immunostaining was performed to identify expression of glial and neuronal markers in the transplanted cells within 224 weeks posttransplant. Results. 4 weeks posttransplant we observed increased expression of mature neuron markers, decreased expression of neural progenitor markers, and primary pro-inflammatory response of glial cells in the graft. Differentiation and maturation of neuronal cells in the graft lasted over 3 months. At 3 and 6 months we detected 2 graft zones: one mainly contained the transplanted neurons and the other human astrocytes. We detected human neurites in the corpus callosum and surrounding striatal tissue and large human tyrosine hydroxylase-expressing neurons in the graft. Conclusion. With graft's morphological characteristics identified at different periods we can better understand pathophysiology and temporal patterns of new dopaminergic neurons integration and striatal reinnervation in a rat PD model in the long-term postoperative period

    Protein Corona Attenuates the Targeting of Antitumor Sialyl Lewis X-Decorated Liposomes to Vascular Endothelial Cells under Flow Conditions

    No full text
    Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome–cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells
    corecore