12 research outputs found
Mouse Ae1 E699Q mediates SO42−i/aniono exchange with [SO42−]i-dependent reversal of wild-type pHo sensitivity
The SLC4A1/AE1 gene encodes the electroneutral Cl−/HCO3− exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl−/HCO3− exchange or 36Cl− efflux but exhibits enhanced dual sulfate efflux mechanisms: electroneutral exchange of intracellular sulfate for extracellular sulfate (SO42−i/SO42−o exchange), and electrogenic exchange of intracellular sulfate for extracellular chloride (SO42−i/Cl−o exchange). Whereas wild-type AE1 mediates 1:1 H+/SO42− cotransport in exchange for either Cl− or for the H+/SO42− ion pair, mutant Ae1 E699Q transports sulfate without cotransport of protons, similar to human erythrocyte AE1 in which the corresponding E681 carboxylate has been chemically converted to the alcohol (hAE1 E681OH). We now show that in contrast to the normal cis-stimulation by protons of wild-type AE1-mediated SO42− transport, both SO42−i/Cl−o exchange and SO42−i/SO42−o exchange mediated by mutant Ae1 E699Q are inhibited by acidic pHo and activated by alkaline pHo. hAE1 E681OH displays a similarly altered pHo dependence of SO42−i/Cl−o exchange. Elevated [SO42−]i increases the K1/2 of Ae1 E699Q for both extracellular Cl− and SO42−, while reducing inhibition of both exchange mechanisms by acid pHo. The E699Q mutation also leads to increased potency of self-inhibition by extracellular SO42−. Study of the Ae1 E699Q mutation has revealed the existence of a novel pH-regulatory site of the Ae1 polypeptide and should continue to provide valuable paths toward understanding substrate selectivity and self-inhibition in SLC4 anion transporters
Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes
Mutations in the human SLC26A3 gene, also known as down-regulated in adenoma (hDRA), cause autosomal recessive congenital chloride-losing diarrhoea (CLD). hDRA expressed in Xenopus oocytes mediated bidirectional Cl−-Cl− and Cl−-HCO3− exchange. In contrast, transport of oxalate was low, and transport of sulfate and of butyrate was undetectable. Two CLD missense disease mutants of hDRA were nonfunctional in oocytes. Truncation of up to 44 C-terminal amino acids from the putatively cytoplasmic C-terminal hydrophilic domain left transport function unimpaired, but deletion of the adjacent STAS (sulfate transporter anti-sigma factor antagonist) domain abolished function. hDRA-mediated Cl− transport was insensitive to changing extracellular pH, but was inhibited by intracellular acidification and activated by NH4+ at acidifying concentrations. These regulatory responses did not require the presence of either hDRA's N-terminal cytoplasmic tail or its 44 C-terminal amino acids, but they did require more proximate residues of the C-terminal cytoplasmic domain. Although only weakly sensitive to inhibition by stilbenes, hDRA was inhibited with two orders of magnitude greater potency by the anti-inflammatory drugs niflumate and tenidap. cAMP-insensitive Cl−-HCO3− exchange mediated by hDRA gained modest cAMP sensitivity when co-expressed with cystic fibrosis transmembrane conductance regulator (CFTR). Despite the absence of hDRA transcripts in human cell lines derived from CFTR patients, DRA mRNA was present at wild-type levels in proximal colon and nearly so in the distal ileum of CFTR(-/-) mice. Thus, pharmacological modulation of DRA might be a useful adjunct treatment of cystic fibrosis
Acute regulation of the SLC26A3 congenital chloride diarrhoea anion exchanger (DRA) expressed in Xenopus oocytes.
Mutations in the human SLC26A3 gene, also known as down-regulated in adenoma (hDRA), cause autosomal recessive congenital chloride-losing diarrhoea (CLD). hDRA expressed in Xenopus oocytes mediated bidirectional Cl--Cl- and Cl--HCO3- exchange. In contrast, transport of oxalate was low, and transport of sulfate and of butyrate was undetectable. Two CLD missense disease mutants of hDRA were nonfunctional in oocytes. Truncation of up to 44 C-terminal amino acids from the putatively cytoplasmic C-terminal hydrophilic domain left transport function unimpaired, but deletion of the adjacent STAS (sulfate transporter anti-sigma factor antagonist) domain abolished function. hDRA-mediated Cl- transport was insensitive to changing extracellular pH, but was inhibited by intracellular acidification and activated by NH4+ at acidifying concentrations. These regulatory responses did not require the presence of either hDRA\u27s N-terminal cytoplasmic tail or its 44 C-terminal amino acids, but they did require more proximate residues of the C-terminal cytoplasmic domain. Although only weakly sensitive to inhibition by stilbenes, hDRA was inhibited with two orders of magnitude greater potency by the anti-inflammatory drugs niflumate and tenidap. cAMP-insensitive Cl--HCO3- exchange mediated by hDRA gained modest cAMP sensitivity when co-expressed with cystic fibrosis transmembrane conductance regulator (CFTR). Despite the absence of hDRA transcripts in human cell lines derived from CFTR patients, DRA mRNA was present at wild-type levels in proximal colon and nearly so in the distal ileum of CFTR(-/-) mice. Thus, pharmacological modulation of DRA might be a useful adjunct treatment of cystic fibrosis
Adaptation of Mycoplasmas to Antimicrobial Agents: Acholeplasma laidlawii Extracellular Vesicles Mediate the Export of Ciprofloxacin and a Mutant Gene Related to the Antibiotic Target
This study demonstrated that extracellular membrane vesicles are involved with the development of resistance to fluoroquinolones by mycoplasmas (class Mollicutes). This study assessed the differences in susceptibility to ciprofloxacin among strains of Acholeplasma laidlawii PG8. The mechanisms of mycoplasma resistance to antibiotics may be associated with a mutation in a gene related to the target of quinolones, which could modulate the vesiculation level. A. laidlawii extracellular vesicles mediated the export of the nucleotide sequences of the antibiotic target gene as well as the traffic of ciprofloxacin. These results may facilitate the development of effective approaches to control mycoplasma infections, as well as the contamination of cell cultures and vaccine preparations
Species differences in Cl− affinity and in electrogenicity of SLC26A6-mediated oxalate/Cl− exchange correlate with the distinct human and mouse susceptibilities to nephrolithiasis
The mouse is refractory to lithogenic agents active in rats and humans, and so has been traditionally considered a poor experimental model for nephrolithiasis. However, recent studies have identified slc26a6 as an oxalate nephrolithiasis gene in the mouse. Here we extend our earlier demonstration of different anion selectivities of the orthologous mouse and human SLC26A6 polypeptides to investigate the correlation between species-specific differences in SLC26A6 oxalate/anion exchange properties as expressed in Xenopus oocytes and in reported nephrolithiasis susceptibility. We find that human SLC26A6 mediates minimal rates of Cl− exchange for Cl−, sulphate or formate, but rates of oxalate/Cl− exchange roughly equivalent to those of mouse slc2a6. Both transporters exhibit highly cooperative dependence of oxalate efflux rate on extracellular [Cl−], but whereas the K1/2 for extracellular [Cl−] is only 8 mm for mouse slc26a6, that for human SLC26A6 is 62 mm. This latter value approximates the reported mean luminal [Cl−] of postprandial human jejunal chyme, and reflects contributions from both transmembrane and C-terminal cytoplasmic domains of human SLC26A6. Human SLC26A6 variant V185M exhibits altered [Cl−] dependence and reduced rates of oxalate/Cl− exchange. Whereas mouse slc26a6 mediates bidirectional electrogenic oxalate/Cl− exchange, human SLC26A6-mediated oxalate transport appears to be electroneutral. We hypothesize that the low extracellular Cl− affinity and apparent electroneutrality of oxalate efflux characterizing human SLC26A6 may partially explain the high human susceptibility to nephrolithiasis relative to that of mouse. SLC26A6 sequence variant(s) are candidate risk modifiers for nephrolithiasis