4 research outputs found

    Actitudes medio ambientales en los estudiantes del Máster Universitario en Formación del Profesorado de ESO y Bachillerato, Formación Profesional y Enseñanzas de Idiomas de la Universidad Complutense de Madrid.

    Get PDF
    Análisis de las actitudes medioambientales presentes en los estudiantes del Máster Universitario en Formación del Profesorado de ESO y Bachillerato,Formación Profesional y Enseñanzas de Idiomas de la Universidad Complutense de Madrid

    The Endless Sources of Hepatocellular Carcinoma Heterogeneity

    No full text
    Hepatocellular carcinoma (HCC) represents a global health problem. The incidence keeps increasing and current therapeutic options confer limited benefits to the patients. Tumor heterogeneity plays a central role in this context, limiting the availability of predictive biomarkers and complicating the criteria used to choose the most suitable therapeutic option. HCC heterogeneity occurs at different levels: within the population (inter-patient heterogeneity) and within tumors from the same patient (intra-patient and intra-tumor heterogeneity). Experts in the field have made many efforts to classify the patients based on clinicopathological characteristics and molecular signatures; however, there is still much work ahead to be able to integrate the extra-tumor heterogeneity that emerges from the complexity of the tumor microenvironment, which plays a critical role in the pathogenesis of the disease and therapy responses. In this review, we summarize tumor intrinsic and extrinsic sources of heterogeneity of the most common etiologies of HCC and summarize the most recent discoveries regarding the evolutionary trajectory of liver cancer cells and the influence of tumor-extrinsic factors such as the microbiome and the host immune system. We further highlight the potential of novel high-throughput methodologies to contribute to a better understanding of this devastating disease and to the improvement of the clinical management of patients

    Epigenetic Mechanisms in Hepatic Stellate Cell Activation During Liver Fibrosis and Carcinogenesis

    Get PDF
    Liver fibrosis is an essential component of chronic liver disease (CLD) and hepatocarcinogenesis. The fibrotic stroma is a consequence of sustained liver damage combined with exacerbated extracellular matrix (ECM) accumulation. In this context, activation of hepatic stellate cells (HSCs) plays a key role in both initiation and perpetuation of fibrogenesis. These cells suffer profound remodeling of gene expression in this process. This review is focused on the epigenetic alterations participating in the transdifferentiation of HSCs from the quiescent to activated state. Recent advances in the field of DNA methylation and post-translational modifications (PTM) of histones (acetylation and methylation) patterns are discussed here, together with altered expression and activity of epigenetic remodelers. We also consider recent advances in translational approaches, including the use of epigenetic marks as biomarkers and the promising antifibrotic properties of epigenetic drugs that are currently being used in patients

    Engineered fibroblast growth factor 19 protects from acetaminophen-induced liver injury and stimulates aged liver regeneration in mice

    No full text
    The liver displays a remarkable regenerative capacity triggered upon tissue injury or resection. However, liver regeneration can be overwhelmed by excessive parenchymal destruction or diminished by pre-existing conditions hampering repair. Fibroblast growth factor 19 (FGF19, rodent FGF15) is an enterokine that regulates liver bile acid and lipid metabolism, and stimulates hepatocellular protein synthesis and proliferation. FGF19/15 is also important for liver regeneration after partial hepatectomy (PH). Therefore recombinant FGF19 would be an ideal molecule to stimulate liver regeneration, but its applicability may be curtailed by its short half-life. We developed a chimaeric molecule termed Fibapo in which FGF19 is covalently coupled to apolipoprotein A-I. Fibapo retains FGF19 biological activities but has significantly increased half-life and hepatotropism. Here we evaluated the proregenerative activity of Fibapo in two clinically relevant models where liver regeneration may be impaired: acetaminophen (APAP) poisoning, and PH in aged mice. The only approved therapy for APAP intoxication is N-acetylcysteine (NAC) and no drugs are available to stimulate liver regeneration. We demonstrate that Fibapo reduced liver injury and boosted regeneration in APAPintoxicated mice. Fibapo improved survival of APAP-poisoned mice when given at later time points, when NAC is ineffective. Mechanistically, Fibapo accelerated recovery of hepatic glutathione levels, potentiated cell growth-related pathways and increased functional liver mass. When Fibapo was administered to old mice prior to PH, liver regeneration was markedly increased. The exacerbated injury developing in these mice upon PH was attenuated, and the hepatic biosynthetic capacity was enhanced. Fibapo reversed metabolic and molecular alterations that impede regeneration in aged livers. It reduced liver steatosis and downregulated p21 and hepatocyte nuclear factor 4 α (Hnf4α) levels, whereas it stimulated Foxm1b gene expression. Together our findings indicate that FGF19 variants retaining the metabolic and growth-promoting effects of this enterokine may be valuable for the stimulation of liver regeneration.Work in the authors' laboratory is supported by CIBERehd and Grants from Instituto de Salud Carlos III (ISCIII) co-financed by 'Fondo Europeo de Desarrollo Regional' (FEDER) 'Una manera de hacer Europa', numbers: FIS PI13/00359, PI13/00385 and PI16/01126. Grants SAF2015-66515-R, SAF201569944-R, SAF 2016-75972 R from Ministerio de Economía y Competitividad, and the center grant P50AA011999 funded by NIAAA. 'Ramón y Cajal-I3' contract to MUL, Mineco-FPI Fellowship to MB-V. Marie Curie EU contract to MGF-B. Fundación M Torres; Fundación Eugenio Rodríguez Pascual; Fundación Mario Losantos; Fundación Familia Puig-Infante and Fundación Bancaria La CaixaHepacare Project.Peer reviewe
    corecore