70 research outputs found

    Childhood-onset systemic lupus erythematosus: characteristics and the prospect of glucocorticoid pulse therapy

    Get PDF
    Childhood-onset systemic lupus erythematosus (cSLE) is an autoimmune disease that results in significant damage and often needs more aggressive treatment. Compared to adult-onset SLE, cSLE has a stronger genetic background and more prevalent elevated type I Interferon expression. The management of cSLE is more challenging because the disease itself and treatment can affect physical, psychological and emotional growth and development. High dose oral glucocorticoid (GC) has become the rule for treating moderate to severe cSLE activity. However, GC-related side effects and potential toxicities are problems that cannot be ignored. Recent studies have suggested that GC pulse therapy can achieve disease remission rapidly and reduce GC-related side effects with a reduction in oral prednisone doses. This article reviews characteristics, including pathogenesis and manifestations of cSLE, and summarized the existing evidence on GC therapy, especially on GC pulse therapy in cSLE, followed by our proposal for GC therapy according to the clinical effects and pathogenesis

    Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade

    Get PDF
    Systemic onset juvenile idiopathic arthritis (SoJIA) encompasses ∌10% of cases of arthritis that begin in childhood. The disease is unique in terms of clinical manifestations, severity of joint involvement, and lack of response to tumor necrosis factor blockade. Here, we show that serum from SoJIA patients induces the transcription of innate immunity genes, including interleukin (IL)-1 in healthy peripheral blood mononuclear cells (PBMCs). Upon activation, SoJIA PBMCs release large amounts of IL-1ÎČ. We administered recombinant IL-1 receptor antagonist to nine SoJIA patients who were refractory to other therapies. Complete remission was obtained in seven out of nine patients and a partial response was obtained in the other two patients. We conclude that IL-1 is a major mediator of the inflammatory cascade that underlies SoJIA and that this cytokine represents a target for therapy in this disease

    Clinical, Molecular, and Genetic Characteristics of PAPA Syndrome: A Review

    Get PDF
    PAPA syndrome (Pyogenic Arthritis, Pyoderma gangrenosum, and Acne) is an autosomal dominant, hereditary auto-inflammatory disease arising from mutations in the PSTPIP1/CD2BP1 gene on chromosome 15q. These mutations produce a hyper-phosphorylated PSTPIP1 protein and alter its participation in activation of the “inflammasome” involved in interleukin-1 (IL-1ÎČ) production. Overproduction of IL-1ÎČ is a clear molecular feature of PAPA syndrome. Ongoing research is implicating other biochemical pathways that may be relevant to the distinct pyogenic inflammation of the skin and joints characteristic of this disease. This review summarizes the recent and rapidly accumulating knowledge on these molecular aspects of PAPA syndrome and related disorders

    Blood leukocyte microarrays to diagnose systemic onset juvenile idiopathic arthritis and follow the response to IL-1 blockade

    Get PDF
    Systemic onset juvenile idiopathic arthritis (SoJIA) represents up to 20% of juvenile idiopathic arthritis. We recently reported that interleukin (IL) 1 is an important mediator of this disease and that IL-1 blockade induces clinical remission. However, lack of specificity of the initial systemic manifestations leads to delays in diagnosis and initiation of therapy. To develop a specific diagnostic test, we analyzed leukocyte gene expression profiles of 44 pediatric SoJIA patients, 94 pediatric patients with acute viral and bacterial infections, 38 pediatric patients with systemic lupus erythematosus (SLE), 6 patients with PAPA syndrome, and 39 healthy children. Statistical group comparison and class prediction identified genes differentially expressed in SoJIA patients compared with healthy children. These genes, however, were also changed in patients with acute infections and SLE. An analysis of significance across all diagnostic groups identified 88 SoJIA-specific genes, 12 of which accurately classified an independent set of SoJIA patients with systemic disease. Transcripts that changed significantly in patients undergoing IL-1 blockade were also identified. Thus, leukocyte transcriptional signatures can be used to distinguish SoJIA from other febrile illnesses and to assess response to therapy. Availability of early diagnostic markers may allow prompt initiation of therapy and prevention of disabilities

    Pulmonary Hypertension and Other Potentially Fatal Pulmonary Complications in Systemic Juvenile Idiopathic Arthritis

    Full text link
    Objective Systemic juvenile idiopathic arthritis (JIA) is characterized by fevers, rash, and arthritis, for which interleukin‐1 (IL‐1) and IL‐6 inhibitors appear to be effective treatments. Pulmonary arterial hypertension (PAH), interstitial lung disease (ILD), and alveolar proteinosis (AP) have recently been reported with increased frequency in systemic JIA patients. Our aim was to characterize and compare systemic JIA patients with these complications to a larger cohort of systemic JIA patients. Methods Systemic JIA patients who developed PAH, ILD, and/or AP were identified through an electronic Listserv and their demographic, systemic JIA, and pulmonary disease characteristics as well as their medication exposure information were collected. Patients with these features were compared to a cohort of systemic JIA patients enrolled in the Childhood Arthritis and Rheumatology Research Alliance (CARRA) registry. Results The patients (n = 25) were significantly ( P < 0.05) more likely than the CARRA registry cohort (n = 389) to be female; have more systemic features; and have been exposed to an IL‐1 inhibitor, tocilizumab, corticosteroids, intravenous immunoglobulin, cyclosporine, and cyclophosphamide. Twenty patients (80%) were diagnosed with pulmonary disease after 2004. Twenty patients (80%) had macrophage activation syndrome (MAS) during their disease course and 15 patients (60%) had MAS at pulmonary diagnosis. Sixteen patients had PAH, 5 had AP, and 7 had ILD. Seventeen patients (68%) were taking or recently discontinued (<1 month) a biologic agent at pulmonary symptom onset; 12 patients (48%) were taking anti–IL‐1 therapy (primarily anakinra). Seventeen patients (68%) died at a mean of 10.2 months from the diagnosis of pulmonary complications. Conclusion PAH, AP, and ILD are underrecognized complications of systemic JIA that are frequently fatal. These complications may be the result of severe uncontrolled systemic disease activity and may be influenced by medication exposure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/97453/1/21889_ftp.pd

    Long‐term safety, efficacy, and quality of life in patients with juvenile idiopathic arthritis treated with intravenous abatacept for up to seven years

    Get PDF
    ClinicalTrials.gov identifier: NCT00095173[Abstract] Objective. The efficacy and safety of abatacept in patients with juvenile idiopathic arthritis (JIA) who experienced an inadequate response to disease‐modifying antirheumatic drugs were previously established in a phase III study that included a 4‐month open‐label lead‐in period, a 6‐month double‐blind withdrawal period, and a long‐term extension (LTE) phase. The aim of this study was to present the safety, efficacy, and patient‐reported outcomes of abatacept treatment (10 mg/kg every 4 weeks) during the LTE phase, for up to 7 years of followup. Methods. Patients enrolled in the phase III trial could enter the open‐label LTE phase if they had not achieved a response to treatment at month 4 or if they had received abatacept or placebo during the double‐blind period. Results. One hundred fifty‐three (80.5%) of 190 patients entered the LTE phase, and 69 patients (36.3%) completed it. The overall incidence rate (events per 100 patient‐years) of adverse events decreased during the LTE phase (433.61 events during the short‐term phase [combined lead‐in and double‐blind periods] versus 132.39 events during the LTE phase). Similar results were observed for serious adverse events (6.82 versus 5.60), serious infections (1.13 versus 1.72), malignancies (1.12 versus 0), and autoimmune events (2.26 versus 1.18). American College of Rheumatology (ACR) Pediatric 30 (Pedi 30) responses, Pedi 70 responses, and clinically inactive disease status were maintained throughout the LTE phase in patients who continued to receive therapy. Improvements in the Child Health Questionnaire physical and psychosocial summary scores were maintained over time. Conclusion. Long‐term abatacept treatment for up to 7 years was associated with consistent safety, sustained efficacy, and quality‐of‐life benefits in patients with JIA
    • 

    corecore