28 research outputs found

    Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas

    Get PDF
    Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase–induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis

    Induced cell-autonomous neutropenia systemically perturbs hematopoiesis in Cebpa enhancer-null mice

    Get PDF
    The transcription factor C/EBPa initiates the neutrophil gene expression program in the bone marrow (BM). Knockouts of the Cebpa gene or its 137kb enhancer in mice show 2 major findings: (1) neutropenia in BM and blood; (2) decrease in long-term hematopoietic stem cell (LT-HSC) numbers. Whether the latter finding is cell-autonomous (intrinsic) to the LT-HSCs or an extrinsic event exerted on the stem cell compartment remained an open question. Flow cytometric analysis of the Cebpa 137kb enhancer knockout model revealed that the reduction in LT-HSC numbers observed was proportional to the degree of neutropenia. Single-cell transcriptomics of wild-type (WT) mouse BM showed that Cebpa is predominantly expressed in early myeloid-biased progenitors but not in LT-HSCs. These observations suggest that the negative effect on LT-HSCs is an extrinsic event caused by neutropenia. We transplanted whole BMs from 137kb enhancer-deleted mice and found that 40% of the recipient mice acquired full-blown neutropenia with severe dysplasia and a significant reduction in the total LT-HSC population. The other 60% showed initial signs of myeloid differentiation defects and dysplasia when they were sacrificed, suggesting they were in an early stage of the same pathological process. This phenotype was not seen in mice transplanted with WT BM. Altogether, these results indicate that Cebpa enhancer deletion causes cell-autonomous neutropenia, which reprograms and disturbs the quiescence of HSCs, leading to a systemic impairment of the hematopoietic process

    Mutational spectrum of myeloid malignancies with inv(3)/t(3;3) reveals a predominant involvement of RAS/RTK signaling pathways

    No full text
    Myeloid malignancies bearing chromosomal inv(3)/t(3; 3) abnormalities are among the most therapy-resistant leukemias. Deregulated expression of EVI1 is the molecular hallmark of this disease; however, the genome-wide spectrum of cooperating mutations in this disease subset has not been systematically elucidated. Here, we show that 98% of inv(3)/t(3; 3) myeloid malignancies harbor mutations in genes activating RAS/receptor tyrosine kinase (RTK) signaling pathways. In addition, hemizygous mutations in GATA2, as well as heterozygous alterations in RUNX1, SF3B1, and genes encoding epigenetic modifiers, frequently co-occur with the inv(3)/t(3; 3) aberration. Notably, neither mutational patterns nor gene expression profiles differ across inv(3)/t(3; 3) acute myeloid leukemia, chronicmyeloid leukemia, andmyelodysplastic syndromecases, suggestingrecognitionof inv(3)/t(3; 3) myeloid malignancies as a single disease entity irrespective of blast count. The high incidence of activating RAS/RTK signalingmutations may provide a target for a rational treatment strategy in this high-risk patient group

    Two splice-factor mutant leukemia subgroups uncovered at the boundaries of MDS and AML using combined gene expression and DNA-methylation profiling

    No full text
    Mutations in splice factor (SF) genes occur more frequently in myelodysplastic syndromes (MDS) than in acute myeloid leukemias (AML). We sequenced complementary DNA from bone marrow of 47 refractory anemia with excess blasts (RAEB) patients, 29 AML cases with low marrow blast cell count, and 325 other AML patients and determined the presence of SF-hotspot mutations in SF3B1, U2AF35, and SRSF2. SF mutations were found in 10 RAEB, 12 AML cases with low marrow blast cell count, and 25 other AML cases. Our study provides evidence that SF-mutant RAEB and SF-mutant AML are clinically, cytologically, and molecularly highly similar. An integrated analysis of genomewide messenger RNA (mRNA) expression profiling and DNA-methylation profiling data revealed 2 unique patient clusters highly enriched for SF-mutant RAEB/AML. The combined genomewide mRNA expression profiling/DNA-methylation profiling signatures revealed 1 SF-mutant patient cluster with an erythroid signature. The other SF-mutant patient cluster was enriched for NRAS/KRAS mutations and showed an inferior survival. We conclude that SF-mutantRAEB/AML constitutes a related disorder overriding the artificial separation between AML and MDS, and that SF-mutant RAEB/AML is composed of 2 molecularly and clinically distinct subgroups. We conclude that SF-mutant disorders should be considered as myeloid malignancies that transcend the boundaries of AML and MDS

    Two Splice Factor Mutant Leukemia Subgroups Uncovered at the Boundaries of MDS and AML using Combined Gene Expression and DNA-Methylation Profiling

    No full text
    Acute Myeloid Leukemia is a highly diverse disease containing many cytogenetic and molecular abnormalities. We analyzed the DNA methylation(DMP) and gene expression profiles (GEP) of 344 AML patients using an unsupervised and supervised approach. We hypothesized to bettercharacterize the disease phenotype by combing these features as these may result in specific patterns in cancer cells which reflect biologicaldifferences. The unsupervised approach segregates patients into 18 clusters, among them six clusters that are defined by the World Health Organization, such as inv16, t(15;17), t(8;21) and CEBPA double mutants. In addition we identified four novel AML subtypes that could not be explained by the enrichment of any currently known recurrent cytogenetic, molecular, morphological or clinical feature. Two of these clusters are categorized with good stability. One of these cluster could be characterized with pathways that are involved in the accumulation of red blood cells and highly predictable using 21 GEP and 3 DMP features, whereas the other cluster is characterized with T-cell related pathways and highly predictable with 9 GEP and 4 DMP features.Pattern Recognition and Bioinformatic

    EVI1 drives leukemogenesis through aberrant ERG activation

    No full text
    Chromosomal rearrangements involving the MDS1 and EVI1 complex locus (MECOM) on chromosome 3q26 define an aggressive subtype of acute myeloid leukemia (AML) that is associated with chemotherapy resistance and dismal prognosis. Established treatment regimens commonly fail in these patients, therefore, there is an urgent need for new therapeutic concepts that will require a better understanding of the molecular and cellular functions of the ecotropic viral integration site 1 (EVI1) oncogene. To characterize gene regulatory functions of EVI1 and associated dependencies in AML, we developed experimentally tractable human and murine disease models, investigated the transcriptional consequences of EVI1 withdrawal in vitro and in vivo, and performed the first genome-wide CRISPR screens in EVI1-dependent AML. By integrating conserved transcriptional targets with genetic dependency data, we identified and characterized the ETS transcription factor ERG as a direct transcriptional target of EVI1 that is aberrantly expressed and selectively required in both human and murine EVI1–driven AML. EVI1 controls the expression of ERG and occupies a conserved intragenic enhancer region in AML cell lines and samples from patients with primary AML. Suppression of ERG induces terminal differentiation of EVI1-driven AML cells, whereas ectopic expression of ERG abrogates their dependence on EVI1, indicating that the major oncogenic functions of EVI1 are mediated through aberrant transcriptional activation of ERG. Interfering with this regulatory axis may provide entry points for the development of rational targeted therapies

    EVI1 is critical for the pathogenesis of a subset of MLL-AF9-rearranged AMLs

    No full text
    The proto-oncogene EVI1 (ecotropic viral integration site-1), located on chromosome band 3q26, is aberrantly expressed in human acute myeloid leukemia (AML) with 3q26 rearrangements. In the current study, we showed, in a large AML cohort carrying 11q23 translocations, that similar to 43% of all mixed lineage leukemia (MLL)-rearranged leukemias are EVI1(pos). High EVI1 expression occurs in AMLs expressing the MLL-AF6, -AF9, -AF10, -ENL, or -ELL fusion genes. In addition, we present evidence that EVI1(pos) MLL-rearranged AMLs differ molecularly, morphologically, and immunophenotypically from EVI1(neg) MLL-rearranged leukemias. In mouse bone marrow cells transduced with MLL-AF9, we show that MLL-AF9 fusion protein maintains Evi1 expression on transformation of Evi1(pos) HSCs. MLL-AF9 does not activate Evi1 expression in MLL-AF9-transformed granulocyte macrophage progenitors (GMPs) that were initially Evi1(neg). Moreover, shRNA-mediated knockdown of Evi1 in an Evi1(pos) MLL-AF9 mouse model inhibits leukemia growth both in vitro and in vivo, suggesting that Evi1 provides a growth-promoting signal. Using the Evi1(pos) MLL-AF9 mouse leukemia model, we demonstrate increased sensitivity to chemotherapeutic agents on reduction of Evi1 expression. We conclude that EVI1 is a critical player in tumor growth in a subset of MLL-rearranged AMLs. (Blood. 2012; 119(24):5838-5849

    Gata2-regulated Gfi1b expression controls endothelial programming during endothelial-to-hematopoietic transition

    No full text
    The first hematopoietic stem cells (HSCs) are formed through endothelial-to-hematopoietic transition (EHT) events during embryonic development. The transcription factor GATA2 is a crucial regulator of EHT and HSC function throughout life. Because GATA2 haploinsufficiency patients have inborn mutations, prenatal defects are likely to have an influence on disease development. In mice, Gata2 haploinsufficiency (Gata2+/-) reduces the number and the functionality of embryonic hematopoietic stem and progenitor cells (HSPCs) generated through EHT. However, the embryonic HSPC pool is heterogeneous and the mechanisms underlying this defect in Gata2+/- embryos are unclear. Here, we investigated whether Gata2 haploinsufficiency selectively affects a cellular subset undergoing EHT. We show that Gata2+/- HSPCs initiate but cannot fully activate hematopoietic programming during EHT. In addition, due to reduced activity of the endothelial repressor Gfi1b, Gata2+/- HSPCs cannot repress the endothelial identity to complete maturation. Finally, we show that hematopoietic-specific induction of gfi1b can restore HSC production in gata2b-null (gata2b-/-) zebrafish embryos. This study illustrates pivotal roles of Gata2 on the regulation of transcriptional network governing HSPC identity throughout EHT
    corecore