17 research outputs found

    Invasion of Africa by a single pfcrt allele of South East Asian type

    Get PDF
    BACKGROUND: Because of its dramatic public health impact, Plasmodium falciparum resistance to chloroquine (CQ) has been documented early on. Chloroquine-resistance (CQR) emerged in the late 1950's independently in South East Asia and South America and progressively spread over all malaria areas. CQR was reported in East Africa in the 1970's, and has since invaded the African continent. Many questions remain about the actual selection and spreading process of CQR parasites, and about the evolution of the ancestral mutant gene(s) during spreading. METHODS: Eleven clinical isolates of P. falciparum from Cambodia and 238 from Africa (Senegal, Ivory Coast, Bukina Faso, Mali, Guinea, Togo, Benin, Niger, Congo, Madagascar, Comoros Islands, Tanzania, Kenya, Mozambique, Cameroun, Gabon) were collected during active case detection surveys carried out between 1996 and 2001. Parasite DNA was extracted from frozen blood aliquots and amplification of the gene pfcrt exon 2 (codon 72–76), exon 4 and intron 4 (codon 220 and microsatellite marker) were performed. All fragments were sequenced. RESULTS: 124 isolates with a sensitive (c76/c220:CVMNK/A) haplotype and 125 isolates with a resistant c76/c220:CVIET/S haplotype were found. The microsatellite showed 17 different types in the isolates carrying the c76/c220:CVMNK/A haplotype while all 125 isolates with a CVIET/S haplotype but two had a single microsatellite type, namely (TAAA)3(TA)15, whatever the location or time of collection. CONCLUSION: Those results are consistent with the migration of a single ancestral pfcrt CQR allele from Asia to Africa. This is related to the importance of PFCRT in the fitness of P. falciparum point out this protein as a potential target for developments of new antimalarial drugs

    Rapid Dissemination of Plasmodium falciparum Drug Resistance Despite Strictly Controlled Antimalarial Use

    Get PDF
    BACKGROUND: Inadequate treatment practices with antimalarials are considered major contributors to Plasmodium falciparum resistance to chloroquine, pyrimethamine and sulfadoxine. The longitudinal survey conducted in Dielmo, a rural Senegalese community, offers a unique frame to explore the impact of strictly controlled and quantified antimalarial use for diagnosed malaria on drug resistance. METHODOLOGY/PRINCIPAL FINDINGS: We conducted on a yearly basis a retrospective survey over a ten-year period that included two successive treatment policies, namely quinine during 1990–1994, and chloroquine (CQ) and sulfadoxine/pyrimethamine (SP) as first and second line treatments, respectively, during 1995–1999. Molecular beacon-based genotyping, gene sequencing and microsatellite analysis showed a low prevalence of Pfcrt and Pfdhfr-ts resistance alleles of Southeast Asian origin by the end of 1994 and their effective dissemination within one year of CQ and SP implementation. The Pfcrt resistant allele rose from 9% to 46% prevalence during the first year of CQ reintroduction, i.e., after a mean of 1.66 CQ treatment courses/person/year. The Pfdhfr-ts triple mutant rose from 0% to 20% by end 1996, after a mean of 0.35 SP treatment courses/person in a 16-month period. Both resistance alleles were observed at a younger age than all other alleles. Their spreading was associated with enhanced in vitro resistance and rapidly translated in an increased incidence of clinical malaria episodes during the early post-treatment period. CONCLUSION/SIGNIFICANCE: In such a highly endemic setting, selection of drug-resistant parasites took a single year after drug implementation, resulting in a rapid progression of the incidence of clinical malaria during the early post-treatment period. Controlled antimalarial use at the community level did not prevent dissemination of resistance haplotypes. This data pleads against reintroduction of CQ in places where resistant allele frequency has dropped to a very low level after CQ use has been discontinued, unless drastic measures are put in place to prevent selection and spreading of mutants during the post-treatment period

    Étude des réponses humorales spécifiques des familles alléliques des antigènes de surface du mérozoite, MSP1 et MSP2, dans le paludisme à Plasmodium falciparum

    No full text
    PARIS-BIUM (751062103) / SudocPARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Countrywide survey shows very high prevalence of Plasmodium falciparum multilocus resistance genotypes in Cambodia.

    No full text
    International audienceCambodia is located in an area of resistance to multiple antimalarials and has been the first country to implement the systematic use of an artesunate-mefloquine combination as first-line treatment for Plasmodium falciparum malaria. Little is known, however, about the prevalence of resistance mutations within the natural parasite populations, impeding rational drug policy in this context. Using direct sequencing of PCR products, we have analyzed sequence polymorphism of the dihydrofolate reductase-thymidylate synthase, dihydropteroate synthetase, and multidrug resistance 1 genes in a large number of clinical P. falciparum isolates collected in various areas of Cambodia. This highlighted a 100% prevalence of haplotypes with multiple mutations in the target genes of antifolates after more than a decade without use of antifolates for malaria therapy. A high prevalence of mutations in Pfmdr1, including mutations associated with decreased in vitro susceptibility to mefloquine and quinine, was also observed. In addition, novel, low-frequency mutations were detected in Pfmdr1. Our findings show an alarming rate of multilocus resistance genotypes in Cambodia, requiring diligent surveillance and imposing limitations on possible future drug combinations

    Discordant temporal evolution of Pfcrt and Pfmdr1 genotypes and Plasmodium falciparum in vitro drug susceptibility to 4-aminoquinolines after drug policy change in French Guiana.

    No full text
    International audienceAnalysis of the evolution of drug target genes under changing drug policy is needed to assist monitoring of Plasmodium falciparum drug resistance in the field. Here we genotype Pfcrt and Pfdmr1 of 700 isolates collected in French Guiana from 2000 (5 years after withdrawal of chloroquine) to 2008, i.e., the period when the artemether-lumefantrine combination was progressively introduced and mefloquine was abandoned. Gene sequencing showed fixation of the 7G8-type Pfcrt SMVNT resistance haplotype and near fixation of the NYCDY Pfdmr1 haplotype. Pfdmr1 gene copy number correlated with 50% inhibitory concentrations of mefloquine and halofantrine (r = 0.64 and 0.47, respectively, n = 547); its temporal changes paralleled changes in in vitro mefloquine susceptibility. However, the molecular parameters studied did not account for the regained in vitro susceptibility to chloroquine and showed a poor correlation with susceptibility to artemether, lumefantrine, or quinine. Identification of novel markers of resistance to these antimalarials is needed in this South American area

    Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6.

    No full text
    International audienceArtemisinin derivatives are an essential component of treatment against multidrug-resistant Plasmodium falciparum malaria. We aimed to investigate in-vitro resistance to artemisinin derivatives in field isolates. In-vitro susceptibility of 530 P falciparum isolates from three countries (Cambodia, French Guiana, and Senegal) with different artemisinin use was assessed with an isotopic microtest. Artemether IC50 up to 117 and 45 nmol/L was seen in French Guiana and Senegal, respectively. DNA sequencing in a subsample of 60 isolates lends support to SERCA-PfATPase6 as the target for artemisinins. The S769N PfATPase6 mutation, noted exclusively in French Guiana, was associated with raised (>30 nmol/L) artemether IC50s (p<0.0001, Mann-Whitney). All resistant isolates came from areas with uncontrolled use of artemisinin derivatives. This rise in resistance indicates the need for increased vigilance and a coordinated and rapid deployment of drug combinations

    Sequence analysis of Plasmodium falciparum cytochrome b in multiple geographic sites.

    Get PDF
    International audienceBACKGROUND: The antimalarial drug atovaquone specifically targets Plasmodium falciparum cytochrome b (Pfcytb), a mitochondrial gene with uniparental inheritance. Cases of resistance to atovaquone associated with mutant Pfcytb have been reported, justifying efforts to better document the natural polymorphism of this gene. To this end, a large molecular survey was conducted in several malaria endemic areas where atovaquone was not yet in regular use. METHODS: The polymorphism of the Pfcytb was analysed by direct sequencing of PCR products corresponding to the full length coding region. Sequence was generated for 671 isolates originating from three continents: Africa (Senegal, Ivory Coast, Central African Republic and Madagascar), Asia (Cambodia) and South America (French Guiana). RESULTS: Overall, 11 polymorphic sites were observed, of which eight were novel mutations. There was a large disparity in the geographic distribution of the mutants. All isolates from Senegal, Central African Republic and Madagascar displayed a Camp/3D7 wild type Pfcytb sequence, as did most samples originating from Cambodia and Ivory Coast. One synonymous (t759a at codon V253V) and two non-synonymous (t553g and a581g at codons F185V and H194R, respectively) singletons were detected in Ivory Coast. Likewise, two synonymous (a126t and c793t at codons -T42T and L265L, respectively) singletons were observed in Cambodia. In contrast, seven mutated sites, affecting seven codons and defining four mutant haplotypes were observed in French Guiana. The wild type allele was observed in only 14% of the French Guiana isolates. The synonymous c688t mutation at position L230L was highly prevalent; the most frequent allele was the c688t single mutant, observed in 84% of the isolates. The other alleles were singletons (a126t/a165c, a4g/a20t/a1024c and a20t/t341c/c688t corresponding to T42T/S55S, N2D/N71I/I342L, N71I/L114S/L230L, respectively" please replace with ' corresponding to T42T/S55S, N2D/N71I/I342L and N71I/L114S/L230L, respectively). The codon 268 polymorphisms associated with atovaquone resistance were not observed in the panel the isolates studied. Overall, the wild type PfCYTb protein isoform was highly predominant in all study areas, including French Guiana, suggesting stringent functional constraints. CONCLUSION: These data along with previously identified Pfcytb field polymorphisms indicate a clustering of molecular signatures, suggesting different ancestral types in South America and other continents. The absence of mutations associated with most atovaquone-proguanil clinical failures indicates that the atovaquone-proguanil association is an interesting treatment option in the study areas
    corecore