5 research outputs found

    Size-Controlled Functionalized Mesoporous Silica Nanoparticles for Tunable Drug Release and Enhanced Anti-Tumoral Activity

    No full text
    Mesoporous silica nanoparticles (MSNs) are considered as one of the most promising nanovectors for controlled drug delivery. For the design of ideal drug nanocarriers, several factors have to be taken into account, such as size and surface chemistry. Here, we report how MSNs surface functionalization and particle size critically affect the drug release performances and therapeutic capabilities. We illustrate the size effect of these functionalized MSNs on in vitro, intracellular, and in vivo drug release efficiency, as well as on nanoparticle and drug diffusion into the targeted tissues (tumor). For this, dispersible MSNs with different particle sizes (from 500 down to 45 nm), similar physicochemical properties (e.g., structural and textural properties), and high colloidal stability (even in saline conditions), were synthesized. Their surface was specifically functionalized with a phosphonate-silane according to a novel postgrafting strategy, for better control over loading and release of positively charged drugs. An efficient particle-size-dependent and pH-dependent release of the loaded drug (i.e., doxorubicin) was achieved in physiological conditions with phosphonated-MSNs compared to pure-MSNs. The cellular uptake efficiency is much higher with the smallest phosphonated-nanoparticles (45 nm). Furthermore, doxorubicin is efficiently released from the nanoparticles into the intracellular compartments, and the drug reaches the nucleus in a time- and particle size-dependent manner. Intratumoral diffusion of the developed nanoparticles, as well as the drug release and its diffusion into the tumor matrix, is clearly enhanced with the smallest phosphonated-nanoparticles (45 nm), leading ultimately to a superior cell and tumor growth inhibition

    Intratumoral Injection of Low-Energy Photon-Emitting Gold Nanoparticles: A Microdosimetric Monte Carlo-Based Model

    No full text
    Gold nanoparticles (Au NPs) distributed in the vicinity of low-dose rate (LDR) brachytherapy seeds could multiply their efficacy thanks to the secondary emissions induced by the photoelectric effect. Injections of radioactive LDR gold nanoparticles (LDR Au NPs), instead of conventional millimeter-size radioactive seeds surrounded by Au NPs, could further enhance the dose by distributing the radioactivity more precisely and homogeneously in tumors. However, the potential of LDR Au NPs as an emerging strategy to treat cancer is strongly dependent on the macroscopic diffusion of the NPs in tumors, as well as on their microscopic internalization within the cells. Understanding the relationship between interstitial and intracellular distribution of NPs, and the outcomes of dose deposition in the cancer tissue is essential for considering future applications of radioactive Au NPs in oncology. Here, LDR Au NPs (<sup>103</sup>Pd:Pd@Au-PEG NPs) were injected in prostate cancer tumors. The particles were visualized at time-points by computed tomography imaging (<i>in vivo</i>), transmission electron microscopy (<i>ex vivo</i>), and optical microscopy (<i>ex vivo</i>). These data were used in a Monte Carlo-based dosimetric model to reveal the dose deposition produced by LDR Au NPs both at tumoral and cellular scales. <sup>103</sup>Pd:Pd@Au-PEG NPs injected in tumors produce a strong dose enhancement at the intracellular level. However, energy deposition is mainly confined around vesicles filled with NPs, and not necessarily close to the nuclei. This suggests that indirect damage caused by the production of reactive oxygen species might be the leading therapeutic mechanism of tumor growth control, over direct damage to the DNA

    Activation of Phenyl 4ā€‘(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonates Prodrugs by CYP1A1 as New Antimitotics Targeting Breast Cancer Cells

    Get PDF
    Prodrug-mediated utilization of the cytochrome P450 (CYP) 1A1 to obtain the selective release of potent anticancer products within cancer tissues is a promising approach in chemotherapy. We herein report the rationale, preparation, biological evaluation, and mechanism of action of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)Ā­benzenesulfonates (PAIB-SOs) that are antimicrotubule prodrugs activated by CYP1A1. Although PAIB-SOs are inert in most cells tested, they are highly cytocidal toward several human breast cancer cells, including hormone-independent and chemoresistant types. PAIB-SOs are <i>N</i>-dealkylated into cytotoxic phenyl 4-(2-oxo-3-imidazolidin-1-yl)Ā­benzenesulfonates (PIB-SOs) in CYP1A1-positive cancer cells, both in vitro and in vivo. In conclusion, PAIB-SOs are novel chemotherapeutic prodrugs with no equivalent among current antineoplastics and whose selective action toward breast cancer is tailored to the characteristic pattern of CYP1A1 expression observed in a large percentage of human breast tumors

    Design, Synthesis, Biological Evaluation, and Structureā€“Activity Relationships of Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)benzenesulfonates as New Tubulin Inhibitors Mimicking Combretastatin A-4

    No full text
    Sixty-one phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs) and 13 of their tetrahydro-2-oxopyrimidin-1(2<i>H</i>)-yl analogues (PPB-SOs) were prepared and biologically evaluated. The antiproliferative activities of PIB-SOs on 16 cancer cell lines are in the nanomolar range and unaffected in cancer cells resistant to colchicine, paclitaxel, and vinblastine or overexpressing the P-glycoprotein. None of the PPB-SOs exhibit significant antiproliferative activity. PIB-SOs block the cell cycle progression in the G<sub>2</sub>/M phase and bind to the colchicine-binding site on Ī²-tubulin leading to cytoskeleton disruption and cell death. Chick chorioallantoic membrane tumor assays show that compounds <b>36</b>, <b>44</b>, and <b>45</b> efficiently block angiogenesis and tumor growth at least at similar levels as combretastatin A-4 (CA-4) and exhibit low to very low toxicity on the chick embryos. PIB-SOs were subjected to CoMFA and CoMSIA analyses to establish quantitative structureā€“activity relationships
    corecore