44 research outputs found

    Introduction of the Anopheles bancroftii Mosquito, a Malaria Vector, into New Caledonia

    No full text
    International audienceIn June 2017, an Anopheles mosquito species was detected in New Caledonia. Morphologic identification and genomic sequencing revealed that the specimens tested belong to An. bancroftii genotype A1. This introduction underscores the risk for local malaria transmission and the vulnerability of New Caledonia to vector introduction

    A systematic review of Leptospira in water and soil environments

    No full text
    International audienceBackground: Leptospirosis, caused by pathogenic Leptospira, is a zoonosis of global distribution. This infectious disease is mainly transmitted by indirect exposure to urine of asymptomatic animals via the environment. As human cases generally occur after heavy rain, an emerging hypothesis suggests that rainfall re-suspend leptospires together with soil particles. Bacteria are then carried to surface water, where humans get exposed. It is currently assumed that pathogenic leptospires can survive in the environment but do not multiply. However, little is known on their capacity to survive in a soil and freshwater environment.Methods: We conducted a systematic review on Leptospira and leptospirosis in the environment in order to collect current knowledge on the lifestyle of Leptospira in soil and water. In total, 86 scientific articles retrieved from online databases or institutional libraries were included in this study. Principals findings/significance: This work identified evidence of survival of Leptospira in the environment but major gaps remain about the survival of virulent species associated with human and animal diseases. Studies providing quantitative data on Leptospira in soil and water are a very recent trend, but must be interpreted with caution because of the uncertainty in the species identification. Several studies mentioned the presence of Leptospira in soils more frequently than in waters, supporting the hypothesis of the soil habitat and dispersion of Leptospira with re-suspended soil particles during heavy rain. In a near future, the growing use of high throughput sequencing will offer new opportunities to improve our understanding of the habitat of Leptospira in the environment. This better insight into the risk of leptospirosis will allow implementing efficient control measures and prevention for the human and animal populations exposed

    Isolation of Leptospira from blood culture bottles

    No full text
    International audienceWith the increasing use of real time PCR techniques, Leptospira isolation has mostly been abandoned for the diagnosis of human leptospirosis. However, there is a great value of collecting Leptospira isolates to better understand the epidemiology of this complex zoonosis and to provide the researchers with different isolates. In this study, we have successfully isolated different Leptospira strains from BacT/Alert aerobic blood culture bottles and suggest that this privileged biological material offers an opportunity to isolate leptospires

    Continuous Excretion of Leptospira borgpetersenii Ballum in Mice Assessed by Viability Quantitative Polymerase Chain Reaction.

    No full text
    International audienceRodents are the main reservoir animals of leptospirosis. In this study, we characterized and quantified the urinary excretion dynamics of Leptospira by Mus musculus infected with 2 Ă— 108 virulent Leptospira borgpetersenii serogroup Ballum. Each micturition was collected separately in metabolic cages, at 12 time points from 7 to 117 days post-infection (dpi). We detected Leptospira in all urine samples collected (up to 8 per time point per mouse) proving that Leptospira excretion is continuous with ca. 90% live L. borgpetersenii Ballum, revealed by viability quantitative polymerase chain reaction. Microscopic visualization by Live/Dead fluorescence confirmed this high proportion of live bacteria and demonstrated that L. borgpetersenii Ballum are excreted, at least partly, as bacterial aggregates. We observed two distinct phases in the excretion dynamics, first an increase in Leptospira concentration shed in the urine between 7 and 63 dpi followed by a plateau phase from 63 dpi onward, with up to 3 Ă— 107Leptospira per mL of urine. These two phases seem to correspond to progressive colonization of renal tubules first, then to stable cell survival and maintenance in kidneys. Therefore, chronically infected adult mice are able to contaminate the environment via urine at each micturition event throughout their lifetime. Because Leptospira excretion reached its maximum 2 months after infection, older rodents have a greater risk of contaminating their surrounding environment

    High level of IL-10 expression in the blood of animal models possibly relates to resistance against leptospirosis

    No full text
    International audienceLeptospirosis is a severe zoonosis which immunopathogenesis is poorly understood. We evaluated correlation between acute form of the disease and the ratio of the anti-inflammatory cytokine IL-10 to the pro-inflammatory TNF-α and IL-1β expression during the early phase of infection comparing resistant mice and susceptible hamsters infected with two different species of virulent Leptospira. The IL-10/TNF-α and IL-10/IL-1β expression ratios were higher in mouse compared to hamster independently of the Leptospira strain, suggesting a preponderant role of the host response and notably these cytokines in the clinical expression and survival to leptospirosis. Using an IL-10 neutralization strategy in Leptospira-infected mouse model, we also showed evidence of a possible role of this cytokine on host susceptibility, bacterial clearance and on regulation of cytokine gene expression

    Deciphering the unexplored Leptospira diversity from soils uncovers genomic evolution to virulence

    No full text
    International audienceDespite recent advances in our understanding of Leptospira genomics, little is known on how virulence has emerged in this heterogeneous bacterial genus as well as on the lifestyle of pathogenic Leptospira outside animal hosts. Here, we isolated 12 novel Leptospira species from tropical soils, significantly increasing the number of known species to 35 and evidencing a highly unexplored biodiversity in the genus. Extended comparative phylogenomics and pan-genome analyses at the genus level by incorporating 26 new genomes, revealed that, the traditional leptospiral " pathogens " cluster, as defined by their phylogenetic position, can be split in two groups with distinct virulence potential and accessory gene patterns. These genomic distinctions are strongly linked to the abilit

    Rainfall-driven resuspension of pathogenic Leptospira in a leptospirosis hotspot

    No full text
    International audienceLeptospirosis is a zoonosis caused by Leptospira bacteria present in the urine of mammals. Leptospira is able to survive in soils and can be resuspended during rain events. Here, we analyzed the pathogenic Leptospira concentration as a function of hydrological variables in a leptospirosis hot spot. A total of 226 samples were collected at the outlet of a 3 km2 watershed degraded by ungulate mammals (deer and feral pigs) and rats which are reservoirs for leptospirosis. Water samples collected at the beginning of a rain event following a dry period contained high concentrations of pathogenic Leptospira. The concentration was generally correlated with the water level and the suspended matter concentration (SMC) during the main flood event. A secondary peak of pathogenic Leptospira was sometimes detected after the main flood and in slightly turbid waters. Lastly, the pathogenic Leptospira concentration was extremely high at the end of a wet season. The pathogenic Leptospira concentrations could not be explained by a linear combination of hydrological variables (e.g. the rainfall, water level, SMC and soil moisture). However, nonlinear machine learning models of rainfall data only provided a fair fit to the observations and explained 75 % of the variance in the log10-transformed pathogenic Leptospira concentration. A comparison of identical machine learning models for the water level, SMC and pathogenic Leptospira concentration showed that the residual error in the Leptospira concentration was due to not only the small dataset but also the intrinsic characteristics of the signal. Our results support the hypothesis whereby pathogenic Leptospira survive at different depths in soils and superficial river sediments (depending on their water saturation) and are transferred to surface water during erosion. These results might help to refine leptospirosis warnings given to the local population. Future research should be focused on larger watersheds in more densely populated areas

    Biodiversity of Environmental Leptospira: Improving Identification and Revisiting the Diagnosis

    Get PDF
    Leptospirosis is an important environmental disease and a major threat to human health causing at least 1 million clinical infections annually. There has recently been a growing interest in understanding the environmental lifestyle of Leptospira. However, Leptospira isolation from complex environmental samples is difficult and time-consuming and few tools are available to identify Leptospira isolates at the species level. Here, we propose a polyphasic isolation and identification scheme, which might prove useful to recover and identify environmental isolates and select those to be submitted to whole-genome sequencing. Using this approach, we recently described 12 novel Leptospira species for which we propose names. We also show that MALDI-ToF MS allows rapid and reliable identification and provide an extensive database of Leptospira MALDI-ToF mass spectra, which will be valuable to researchers in the leptospirosis community for species identification. Lastly, we also re-evaluate some of the current techniques for the molecular diagnosis of leptospirosis taking into account the extensive and recently revealed biodiversity of Leptospira in the environment. In conclusion, we describe our method for isolating Leptospira from the environment, confirm the usefulness of mass spectrometry for species identification and propose names for 12 novel species. This also offers the opportunity to refine current molecular diagnostic tools

    Evidence of human leptospirosis cases in a cohort of febrile patients in Bangui, Central African Republic: a retrospective study, 2012–2015

    No full text
    International audienceBACKGROUND: In spite of a local favorable environment, leptospirosis has never been described in Central African Republic so far mainly because of the weakness of diagnostic tests and differential diagnostic strategy for febrile jaundice cases negative for yellow fever virus. Here we bring a complementary insight to conclusions of Gadia CLB et al. regarding the presence of leptospirosis in Central African Republic in YFV-negative febrile icteric patients.METHODS: Our study included 497 individuals presenting with fever and jaundice but negative for yellow fever infection, retrospectively selected from the national surveillance biobank for yellow fever in Institut Pasteur de Bangui, Central African Republic. A combination of serological (ELISA, agglutination) and molecular biology techniques (quantitative real-time polymerase chain reaction) was used to identify Leptospira or the patient's immune response to the bacteria. Statistical analyses were done using the non parametric Mann-Withney U test with a 5% statistical threshold.RESULTS: ELISA test results showed 46 positive serum samples while 445 were negative and 6 remains equivocal. In addition, the reference microscopic agglutination test for leptospirosis diagnostic confirmed that 7 out of 32 samples tested were positive. Unfortunately, all 497 serum samples tested for leptospirosis were negative using the molecular techniques.CONCLUSIONS: Unlike Gadia et al., we confirmed that leptospirosis is circulating in Central African Republic and therefore may be responsible for some of the unexplained cases of febrile jaundice in the country. Thus, leptospirosis needs to be investigated to improve identification of aetiological pathogens. Our study also suggests a need to improve sample transportation and storage conditions
    corecore