3 research outputs found

    CD89 Is a Potent Innate Receptor for Bacteria and Mediates Host Protection from Sepsis

    No full text
    Summary: Direct bacterial recognition by innate receptors is crucial for bacterial clearance. Here, we show that the IgA receptor CD89 is a major innate receptor that directly binds bacteria independently of its cognate ligands IgA and c-reactive protein (CRP). This binding is only partially inhibited by serum IgA and induces bacterial phagocytosis by CD11c+ dendritic cells and monocytes and/or macrophages, suggesting a physiological role in innate host defense. Blood phagocytes from common variable immunodeficiency patients bind, internalize, and kill bacteria in a CD89-dependent manner, confirming the IgA independence of this mechanism. In vivo, CD89 transgenic mice are protected in two different models of sepsis: a model of pneumonia and the cecal ligation and puncture (CLP) polymicrobial model of infection. These data identify CD89 as a first-line innate receptor for bacterial clearance before adaptive responses can be mounted. Fc receptors may emerge as a class of innate receptors for various bacteria with pleiotropic roles. : de Tymowski et al. demonstrate that CD89 serves as an innate receptor during the early phase of infection. During the late phase, the receptor acts in both innate and adaptive immune responses through double interaction with IgA- or CRP-opsonized and non-opsonized bacteria. Keywords: Fc receptor, innate receptor, sepsis, ITAM, host defens

    Erythrocytosis associated with IgA nephropathy

    No full text
    International audienceBackground Erythrocytosis is a hematological disorder usually related to hematopoietic stem cell somatic muta-tions. However, unexplained erythrocytosis remains frequent. In this study, we evaluated the involvement of IgA1, a regulator of erythropoiesis also implicated in IgA nephropathy (IgAN) pathophysiology, in unexplained polycythe-mia/erythrocytosis (PE) of IgAN patients.Methods IgAN-PE patients’ serum was collected, analyzed and used to study IgA1 effect on proliferation and differ-entiation of erythroid progenitors. Hematological parameters of transgenic mice for human alpha1 heavy chain were studied. Multicentric observational cohorts of chronic kidney disease (CKD) patients, including both native kidney diseases and renal transplants, were studied to analyze patient hemoglobin levels.Findings We retrospectively identiïŹed 6 patients with IgAN and unexplained PE. In large CKD cohorts, IgAN was associated with PE in 3.5% of patients (p<0.001 compared to other nephropathies). IgAN was an independent factor associated with higher hemoglobin levels (13.1g/dL vs 12.2 g/dL, p=0.01). During post-transplant anemia, anemia recovery was faster in IgAN patients. Elevated polymeric/monomeric IgA1 ratio as well as high Gd-IgA1 rate were observed in circulating IgA1 of the 6 IgAN-PE patients as compared with control or IgAN patients without PE. IgA1 from these patients increased the sensitivity of erythroid progenitors to Epo. In mice, we also observed an elevation of hematocrit in alpha1 knock-in mice compared to wild type controls.Interpretation These data identify a new etiology of erythrocytosis and demonstrate the role of pIgA1 in human erythropoiesis. This syndrome of IgA-related erythrocytosis should be investigated in case of unexplained erythrocy-tosis and renal disease
    corecore