77 research outputs found
Autophagy plays an important role in protecting Pacific oysters from OsHV-1 and Vibrio aestuarianus infections.
Recent mass mortality outbreaks around the world in Pacific oysters, Crassostrea gigas, have seriously affected the aquaculture economy. Although the causes for these mortality outbreaks appear complex, infectious agents are involved. Two pathogens are associated with mass mortality outbreaks, the virus ostreid herpesvirus 1 (OsHV-1) and the bacterium Vibrio aestuarianus. Here we describe the interactions between these 2 pathogens and autophagy, a conserved intracellular pathway playing a key role in innate immunity. We show for the first time that autophagy pathway is present and functional in Pacific oysters and plays an important role to protect animals from infections. This study contributes to better understand the innate immune system of Pacific oysters.This work was partially funded through the EU project Bivalife
(FP7 KBBE, contract n 266157), the Poitou Charentes
Region and DPMA (Direction des p^eches maritimes et de
l’aquaculture, AESTU project). David Rubinsztein is aWellcome
Trust Prinicipal Research Fellow.This is the final published version. It first appeared at http://www.tandfonline.com/doi/full/10.1080/15548627.2015.1017188
Probiotics for the Control of Parasites: An Overview
Probiotics are defined as live organisms, which confer benefits to the host. Their efficiency was demonstrated for the treatment of gastrointestinal disorders, respiratory infections, and allergic symptoms, but their use is mostly limited to bacterial and viral diseases. During the last decade, probiotics as means for the control of parasite infections were reported covering mainly intestinal diseases but also some nongut infections, that are all of human and veterinary importance. In most cases, evidence for a beneficial effect was obtained by studies using animal models. In a few cases, cellular interactions between probiotics and pathogens or relevant host cells were also investigated using in vitro culture systems. However, molecular mechanisms mediating the beneficial effects are as yet poorly understood. These studies indicate that probiotics might indeed provide a strain-specific protection against parasites, probably through multiple mechanisms. But more unravelling studies are needed to justify probiotic utilisation in therapeutics
Can selection for resistance to OsHV-1 infection modify susceptibility to Vibrio aestuarianus infection in Crassostrea gigas? First insights from experimental challenges using primary and successive exposures
Infection dynamics of a V. splendidus strain pathogenic to Mytilus edulis: in vivo and in vitro interactions with hemocytes
International audienc
Susceptibility variation to the main pathogens of Crassostrea gigas at the larval, spat and juvenile stages using unselected and selected oysters to OsHV-1 and/or V. aestuarianus
Insights into the microbiota of farmed and wild Mytilus SP: Is there a link between bacteria communities and host susceptibility?
Impact of epizootics on mussel farms: Insights into microbiota composition of Mytilus species
International audienceOutbreaks of marine mussel mortality on French farms could have different aetiologies. One of them implies Vibrio splendidus strains. Beyond the involvement of this pathogen, there is considerable evidence that diseases often result from interactions between several microbes and the host. In this study, we explored the bacterial communities associated with mussel species and the surrounding water collected from a mussel farm affected by mortalities. The microbiota of Mytilus edulis, Mytilus galloprovincialis and their hybrids displayed an abnormal abundance of Proteobacteria, in particular the genera Vibrio, Cobetia and Arcobacter. Despite the dysbiosis, the Mediterranean mussel showed a different microbiota profile with a higher richness and presence of the phylum Bacteroidetes. Bipartite network analyses at the level of bacteria families confirmed this finding and showed that the microbiomes of M. edulis and the hybrids tended to cluster together. In addition, injection of mussels with the virulent V. splendidus induced less mortality rate in M. galloprovincialis compared to the other Mytilus sp. suggesting a better resistance of the Mediterranean mussel to infection. Our findings point to a probable aetiology of pathobiome-mediated disease in mussels. To fully understand this phenomenon, more knowledge is needed on the roles of pathobiotic systems and their development during disease establishment
Genomic selection for resistance to one pathogenic strain of Vibrio splendidus in blue mussel Mytilus edulis
IntroductionThe blue mussel is one of the major aquaculture species worldwide. In France, this species faces a significant threat from infectious disease outbreaks in both mussel farms and the natural environment over the past decade. Diseases caused by various pathogens, particularly Vibrio spp., have posed a significant challenge to the mussel industry. Genetic improvement of disease resistance can be an effective approach to overcoming this issue.MethodsIn this work, we tested genomic selection in the blue mussel (Mytilus edulis) to understand the genetic basis of resistance to one pathogenic strain of Vibrio splendidus (strain 14/053 2T1) and to predict the accuracy of selection using both pedigree and genomic information. Additionally, we performed a genome-wide association study (GWAS) to identify putative QTLs underlying disease resistance. We conducted an experimental infection involving 2,280 mussels sampled from 24 half-sib families containing each two full-sib families which were injected with V. splendidus. Dead and survivor mussels were all sampled, and among them, 348 dead and 348 surviving mussels were genotyped using a recently published multi-species medium-density 60K SNP array.ResultsFrom potentially 23.5K SNPs for M. edulis present on the array, we identified 3,406 high-quality SNPs, out of which 2,204 SNPs were successfully mapped onto the recently published reference genome. Heritability for resistance to V. splendidus was moderate ranging from 0.22 to 0.31 for a pedigree-based model and from 0.28 to 0.36 for a genomic-based model.DiscussionGWAS revealed the polygenic architecture of the resistance trait in the blue mussel. The genomic selection models studied showed overall better performance than the pedigree-based model in terms of accuracy of breeding values prediction. This work provides insights into the genetic basis of resistance to V. splendidus and exemplifies the potential of genomic selection in family-based breeding programs in M. edulis
- …
