13 research outputs found

    Biased Signaling of the Angiotensin II Type 1 Receptor Can Be Mediated through Distinct Mechanisms

    Get PDF
    Seven transmembrane receptors (7TMRs) can adopt different active conformations facilitating a selective activation of either G protein or β-arrestin-dependent signaling pathways. This represents an opportunity for development of novel therapeutics targeting selective biological effects of a given receptor. Several studies on pathway separation have been performed, many of these on the Angiotensin II type 1 receptor (AT1R). It has been shown that certain ligands or mutations facilitate internalization and/or recruitment of β-arrestins without activation of G proteins. However, the underlying molecular mechanisms remain largely unresolved. For instance, it is unclear whether such selective G protein-uncoupling is caused by a lack of ability to interact with G proteins or rather by an increased ability of the receptor to recruit β-arrestins. Since uncoupling of G proteins by increased ability to recruit β-arrestins could lead to different cellular or in vivo outcomes than lack of ability to interact with G proteins, it is essential to distinguish between these two mechanisms.We studied five AT1R mutants previously published to display pathway separation: D74N, DRY/AAY, Y292F, N298A, and Y302F (Ballesteros-Weinstein numbering: 2.50, 3.49-3.51, 7.43, 7.49, and 7.53). We find that D74N, DRY/AAY, and N298A mutants are more prone to β-arrestin recruitment than WT. In contrast, receptor mutants Y292F and Y302F showed impaired ability to recruit β-arrestin in response to Sar1-Ile4-Ile8 (SII) Ang II, a ligand solely activating the β-arrestin pathway.Our analysis reveals that the underlying conformations induced by these AT1R mutants most likely represent principally different mechanisms of uncoupling the G protein, which for some mutants may be due to their increased ability to recruit β-arrestin2. Hereby, these findings have important implications for drug discovery and 7TMR biology and illustrate the necessity of uncovering the exact molecular determinants for G protein-coupling and β-arrestin recruitment, respectively

    Quantification of pre-mRNA escape rate and synergy in splicing

    Get PDF
    Splicing reactions generally combine high speed with accuracy. However, some of the pre-mRNAs escape the nucleus with a retained intron. Intron retention can control gene expression and increase proteome diversity. We calculated the escape rate for the yeast PTC7 intron and pre-mRNA. This prediction was facilitated by the observation that splicing is a linear process and by deriving simple algebraic expressions from a model of co- and post-transcriptional splicing and RNA surveillance that determines the rate of the nonsense-mediated decay (NMD) of the pre-mRNAs with the retained intron. The escape rate was consistent with the observed threshold of splicing rate below which the mature mRNA level declined. When an mRNA contains multiple introns, the outcome of splicing becomes more difficult to predict since not only the escape rate of the pre-mRNA has to be considered, but also the possibility that the splicing of each intron is influenced by the others. We showed that the two adjacent introns in the SUS1 mRNA are spliced cooperatively, but this does not counteract the escape of the partially spliced mRNA. These findings will help to infer promoter activity and to predict the behavior of and to control splicing regulatory networks

    Monitoring strategies for clinical intervention studies

    No full text
    AUTHORS' CONCLUSIONS: The evidence base is limited in terms of quantity and quality. Ideally, for each of the five identified comparisons, more prospective, comparative monitoring studies nested in clinical trials and measuring effects on all outcomes specified in this review are necessary to draw more reliable conclusions. However, the results suggesting risk-based, targeted, and mainly central monitoring as an efficient strategy are promising. The development of reliable triggers for on-site visits is ongoing; different triggers might be used in different settings. More evidence on risk indicators that identify sites with problems or the prognostic value of triggers is needed to further optimize central monitoring strategies. In particular, approaches with an initial assessment of trial-specific risks that need to be closely monitored centrally during trial conduct with triggered on-site visits should be evaluated in future research

    An Angiotensin II type 1 receptor activation switch patch revealed through Evolutionary Trace analysis

    No full text
    Seven transmembrane (7TM) or G protein-coupled receptors constitute a large superfamily of cell surface receptors sharing a structural motif of seven transmembrane spanning alpha helices. Their activation mechanism most likely involves concerted movements of the transmembrane helices, but remains to be completely resolved. Evolutionary Trace (ET) analysis is a computational method, which identifies clusters of functionally important residues by integrating information on evolutionary important residue variations with receptor structure. Combined with known mutational data, ET predicted a patch of residues in the cytoplasmic parts of TM2, TM3, and TM6 to form an activation switch that is common to all family A 7TM receptors. We tested this hypothesis in the rat Angiotensin II (Ang II) type 1 (AT1) receptor. The receptor has important roles in the cardiovascular system, but has also frequently been applied as a model for 7TM receptor activation and signaling. Six mutations: F66A, L67R, L70R, L119R, D125A, and I245F were targeted to the putative switch and assayed for changes in activation state by their ligand binding, signaling, and trafficking properties. All but one receptor mutant (that was not expressed well) displayed phenotypes associated with changed activation state, such as increased agonist affinity or basal activity, promiscuous activation, or constitutive internalization highlighting the importance of testing different signaling pathways. We conclude that this evolutionary important patch mediates interactions important for maintaining the inactive state. More broadly, these observations in the AT1 receptor are consistent with computational predictions of a generic role for this patch in 7TM receptor activation

    Towards the development of a comprehensive framework: Qualitative systematic survey of definitions of clinical research quality

    No full text
    <div><p>Objective</p><p>To systematically survey existing definitions, concepts, and criteria of clinical research quality, both developed by stakeholder groups as well as in the medical literature. This study serves as a first step in the development of a comprehensive framework for the quality of clinical research.</p><p>Study design and setting</p><p>We systematically and in duplicate searched definitions, concepts and criteria of clinical research quality on websites of stakeholders in clinical research until no further insights emerged and in MEDLINE up to February 2015. Stakeholders included governmental bodies, regulatory agencies, the pharmaceutical industry, academic and commercial contract research organizations, initiatives, research ethics committees, patient organizations and funding agencies from 13 countries. Data synthesis involved descriptive and qualitative analyses following the Framework Method on definitions, concepts, and criteria of clinical research quality. Descriptive codes were applied and grouped into clusters to identify common and stakeholder-specific quality themes.</p><p>Results</p><p>Stakeholder concepts on how to assure quality throughout study conduct or articles on quality assessment tools were common, generally with no <i>a priori</i> definition of the term quality itself. We identified a total of 20 explicit definitions of clinical research quality including varying quality dimensions and focusing on different stages in the clinical research process. Encountered quality dimensions include ethical conduct, patient safety/rights/priorities, internal validity, precision of results, generalizability or external validity, scientific and societal relevance, transparency and accessibility of information, research infrastructure and sustainability. None of the definitions appeared to be comprehensive either in terms of quality dimensions, research stages, or stakeholder perspectives.</p><p>Conclusion</p><p>Clinical research quality is often discussed but rarely defined. A framework defining clinical research quality across stakeholders’ individual perspectives is desirable to facilitate discussion, assessment, and improvement of quality at all stages of clinical research.</p></div
    corecore