58 research outputs found

    Amyotrophic lateral sclerosis genetic studies: from genome-wide association mapping to genome sequencing

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of obscure etiology. Multiple genetic studies have been conducted to advance our understanding of the disease, employing a variety of techniques such as linkage mapping in families, to genome-wide association studies and sequencing based approaches such as whole exome sequencing and whole genome sequencing and a few epigenetic analyses. While major progress has been made, the majority of the genetic variation involved in ALS is yet to be undefined. The optimal study designs to investigate ALS depend on the genetic model for the disease, and it is likely that different approaches will be required to map genes involved in familial and sporadic disease. The potential approaches and their strengths and weaknesses are discussed

    Identification of RNA bound to the TDP-43 ribonucleoprotein complex in the adult mouse brain

    Get PDF
    Cytoplasmic inclusions containing TDP-43 are a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. TDP-43 is an RNA binding protein involved in gene regulation through control of RNA transcription, splicing and transport. However, the function of TDP-43 in the nervous system is largely unknown and its role in the pathogenesis of ALS is unclear. The aim of this study was to identify genes in the central nervous system that are regulated by TDP-43. RNA-immunoprecipitation with anti-TDP-43 antibody, followed by microarray analysis (RIP-chip), was used to isolate and identify RNA bound to TDP-43 protein from mouse brain. This analysis produced a list of 1839 potential TDP-43 gene targets, many of which overlap with previous studies and whose functions include RNA processing and synaptic function. Immunohistochemistry demonstrated that the TDP-43 protein could be found at the presynaptic membrane of axon terminals in the neuromuscular junction in mice. In conclusion, the finding that TDP-43 binds to RNA that codes for genes related to synaptic function, together with the localization of TDP-43 protein at axon terminals, suggests a role for TDP-43 in the transport of synaptic mRNAs into distal processes

    XLMR in MRX families 29, 32, 33 and 38 results from the dup24 mutation in the ARX (Aristaless related homeobox) gene

    Get PDF
    BACKGROUND: X-linked mental retardation (XLMR) is the leading cause of mental retardation in males. Mutations in the ARX gene in Xp22.1 have been found in numerous families with both nonsyndromic and syndromic XLMR. The most frequent mutation in this gene is a 24 bp duplication in exon 2. Based on this fact, a panel of XLMR families linked to Xp22 was tested for this particular ARX mutation. METHODS: Genomic DNA from XLMR families linked to Xp22.1 was amplified for exon 2 in ARX using a Cy5 labeled primer pair. The resulting amplicons were sized using the ALFexpress automated sequencer. RESULTS: A panel of 11 families with X-linked mental retardation was screened for the ARX 24dup mutation. Four nonsyndromic XLMR families – MRX29, MRX32, MRX33 and MRX38 – were found to have this particular gene mutation. CONCLUSION: We have identified 4 additional XLMR families with the ARX dup24 mutation from a panel of 11 XLMR families linked to Xp22.1. This finding makes the ARX dup24 mutation the most common mutation in nonsyndromic XLMR families linked to Xp22.1. As this mutation can be readily tested for using an automated sequencer, screening should be considered for any male with nonsyndromic MR of unknown etiology

    Genomic Convergence among ERRα, PROX1, and BMAL1 in the Control of Metabolic Clock Outputs

    Get PDF
    Metabolic homeostasis and circadian rhythms are closely intertwined biological processes. Nuclear receptors, as sensors of hormonal and nutrient status, are actively implicated in maintaining this physiological relationship. Although the orphan nuclear receptor estrogen-related receptor α (ERRα, NR3B1) plays a central role in the control of energy metabolism and its expression is known to be cyclic in the liver, its role in temporal control of metabolic networks is unknown. Here we report that ERRα directly regulates all major components of the molecular clock. ERRα-null mice also display deregulated locomotor activity rhythms and circadian period lengths under free-running conditions, as well as altered circulating diurnal bile acid and lipid profiles. In addition, the ERRα-null mice exhibit time-dependent hypoglycemia and hypoinsulinemia, suggesting a role for ERRα in modulating insulin sensitivity and glucose handling during the 24-hour light/dark cycle. We also provide evidence that the newly identified ERRα corepressor PROX1 is implicated in rhythmic control of metabolic outputs. To help uncover the molecular basis of these phenotypes, we performed genome-wide location analyses of binding events by ERRα, PROX1, and BMAL1, an integral component of the molecular clock. These studies revealed the existence of transcriptional regulatory loops among ERRα, PROX1, and BMAL1, as well as extensive overlaps in their target genes, implicating these three factors in the control of clock and metabolic gene networks in the liver. Genomic convergence of ERRα, PROX1, and BMAL1 transcriptional activity thus identified a novel node in the molecular circuitry controlling the daily timing of metabolic processes

    Feline low-grade alimentary lymphoma: an emerging entity and a potential animal model for human disease

    Get PDF
    Background: Low-grade alimentary lymphoma (LGAL) is characterised by the infiltration of neoplastic T-lymphocytes, typically in the small intestine. The incidence of LGAL has increased over the last ten years and it is now the most frequent digestive neoplasia in cats and comprises 60 to 75% of gastrointestinal lymphoma cases. Given that LGAL shares common clinical, paraclinical and ultrasonographic features with inflammatory bowel diseases, establishing a diagnosis is challenging. A review was designed to summarise current knowledge of the pathogenesis, diagnosis, prognosis and treatment of feline LGAL. Electronic searches of PubMed and Science Direct were carried out without date or language restrictions. Results: A total of 176 peer-reviewed documents were identified and most of which were published in the last twenty years. 130 studies were found from the veterinary literature and 46 from the human medicine literature. Heterogeneity of study designs and outcome measures made meta-analysis inappropriate. The pathophysiology of feline LGAL still needs to be elucidated, not least the putative roles of infectious agents, environmental factors as well as genetic events. The most common therapeutic strategy is combination treatment with prednisolone and chlorambucil, and prolonged remission can often be achieved. Developments in immunohistochemical analysis and clonality testing have improved the confidence of clinicians in obtaining a correct diagnosis between LGAL and IBD. The condition shares similarities with some diseases in humans, especially human indolent T-cell lymphoproliferative disorder of the gastrointestinal tract. Conclusions: The pathophysiology of feline LGAL still needs to be elucidated and prospective studies as well as standardisation of therapeutic strategies are needed. A combination of conventional histopathology and immunohistochemistry remains the current gold-standard test, but clinicians should be cautious about reclassifying cats previously diagnosed with IBD to lymphoma on the basis of clonality testing. Importantly, feline LGAL could be considered to be a potential animal model for indolent digestive T-cell lymphoproliferative disorder, a rare condition in human medicine

    Identification of novel genes for x-linked mental retardation / by Marie Mangelsdorf.

    No full text
    "May 2003"Bibliography: leaves 187-213.xi, 213, [46] leaves : ill. (col.) ; 30 cm.The aim of this study is to identify novel genes involved in X-linked mental retardation (XLMR). The first part of the project involved molecular characterisation of the breakpoints of three X chromosome rearrangements in three unrelated patients with mental retardation, to identify candidate genes for familial XLMR. The second part involved positional candidate gene screening in a family that was localised to two regions of the X chromosome by linkage analysis and the final part the identification of the homeobox gene ARX and its role in both syndromic and non-syndromic XLMR. This study has addressed the identification of candidate genes for XLMR using two positional cloning approaches and two candidate genes, BGN and TMG3a, have been identified. It has also resulted in a refined linkage interval in a large NSXLMR family, in which screening of candidates has begun. Finally, mutations in the gene ARX have been identified as a significant contributor to the aetiology of XLMR.Thesis (Ph.D.)--University of Adelaide, Dept. of Paediatrics, 200

    Submission to the Australian Human Rights Commission, Human Rights and Technology Project

    No full text
    Genomic data is highly predictive and it provides information about not only the sample donor, but also family members, including distant relatives and future generations. As such, genomic data presents unique concerns about the right to privacy for individuals, particularly those individuals who did not consent to genetic testing or other use and/or access to their genetic data. The predictive nature of genomic data raises concerns about the right to non-discrimination and equal treatment – including for children.Genetic data requires specific legislation. Technology is progressing faster than Australian law. Current legislation is insufficient and we suggest that Australia should enact a Genetic Data Protection Act providing specific protection

    Dramatic advances in forensics expose the need for genetic data legislation

    No full text
    Revista em EAD - polo Niterói Sujet : A Revista Eletrônica em Educação a Distância (EAD) nasceu com uma proposta editorial democrática, aberta as todas as tendências investigativas contemporâneas e a todos os sujeitos que transitam pelos cursos desenvolvidos no Polo de Niterói. Configura-se em mais um espaço para a divulgação dos resultados de pesquisas científicas, resenhas, trabalhos acadêmicos, contos, comunicações e, consequentemente, um lócus de constante troca e ampliação de conhe..
    • …
    corecore