93 research outputs found

    Distinctive and pervasive alterations in aqueous humor protein composition following different types of glaucoma surgery

    Get PDF
    PURPOSE: To investigate whether specific glaucoma surgeries are associated with differences in aqueous humor protein concentrations compared to eyes without filters. METHODS: In this cross-sectional study, aqueous humor samples were prospectively collected from control subjects who underwent routine cataract surgery (n=14) and from patients who had different glaucoma filters: Baerveldt aqueous shunt (n=6), Ahmed aqueous shunt (n=6), trabeculectomy (n=5), and Ex-Press trabeculectomy (n=3). Total protein concentrations were determined with Bradford assay. Tryptic digests were analyzed with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Proteins were identified with high confidence using stringent criteria and were quantitatively compared with a label-free platform. Relative protein quantities were compared across groups with ANOVA. Post hoc pair-wise comparisons were adjusted for multiple comparisons. RESULTS: Compared to the control eyes, the aqueous humor protein concentration was increased approximately tenfold in the Ahmed and Baerveldt eyes and fivefold in the trabeculectomy and Ex-Press eyes. Overall, 718 unique proteins, splice variants, or isoforms were identified. No differences in the protein concentrations were detected between the Baerveldt and Ahmed groups. Likewise, the trabeculectomy and Ex-Press groups were remarkably similar. Therefore, the aqueous shunt groups were pooled, and the trabeculectomy groups were pooled for a three-way comparison with the controls. More than 500 proteins differed significantly in relative abundance (ANOVA p<0.01) among the control, aqueous shunt, and trabeculectomy groups. Functional analyses suggested these alterations in relative protein abundance affected dozens of signaling pathways. CONCLUSIONS: Different glaucoma surgical procedures were associated with marked increases in the aqueous humor protein concentration and distinctive changes in the relative abundance of numerous proteins involved in multiple signaling pathways

    Rac Activation Induces NADPH Oxidase Activity in Transgenic COSphox Cells and Level of Superoxide Production is Exchange Factor-Dependent

    Get PDF
    Transient expression of constitutively active Rac1 derivatives, (G12V) or (Q61L), was sufficient to induce phagocyte NADPH oxidase activity in a COS-7 cell model in which human cDNAs for essential oxidase components, gp91phox, p22phox, p47phox, and p67phox, were expressed as stable transgenes. Expression of constitutively active Rac1 in “COSphox” cells induced translocation of p47phox and p67phox to the membrane. Furthermore, translocation of p47phox was induced in the absence of p67phox expression, even though Rac does not directly bind p47phox. Rac effector domain point substitutions (A27K, G30S, D38A, Y40C), which can selectively eliminate interaction with different effector proteins, impaired Rac1V12-induced superoxide production. Activation of endogenous Rac1 by expression of constitutively active Rac-guanine nucleotide exchange factor (GEF) derivatives was sufficient to induce high level NADPH oxidase activity in COSphox cells. The constitutively active form of the hematopoietic-specific GEF, Vav1, was the most effective at activating superoxide production, despite detection of higher levels of Rac1-GTP upon expression of constitutively active Vav2 or Tiam1 derivatives. These data suggest that Rac can play a dual role in NADPH oxidase activation, both by directly participating in the oxidase complex and by activating signaling events leading to oxidase assembly, and that Vav1 may be the physiologically relevant GEF responsible for activating this Rac-regulated complex

    The phosphoinositide-binding protein p40phox activates the NADPH oxidase during FcγIIA receptor–induced phagocytosis

    Get PDF
    Superoxide produced by the phagocyte reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is essential for host defense. Enzyme activation requires translocation of p67phox, p47phox, and Rac-GTP to flavocytochrome b558 in phagocyte membranes. To examine the regulation of phagocytosis-induced superoxide production, flavocytochrome b558, p47phox, p67phox, and the FcγIIA receptor were expressed from stable transgenes in COS7 cells. The resulting COSphoxFcγR cells produce high levels of superoxide when stimulated with phorbol ester and efficiently ingest immunoglobulin (Ig)G-coated erythrocytes, but phagocytosis did not activate the NADPH oxidase. COS7 cells lack p40phox, whose role in the NADPH oxidase is poorly understood. p40phox contains SH3 and phagocyte oxidase and Bem1p (PB1) domains that can mediate binding to p47phox and p67phox, respectively, along with a PX domain that binds to phosphatidylinositol-3-phosphate (PI(3)P), which is generated in phagosomal membranes. Expression of p40phox was sufficient to activate superoxide production in COSphoxFcγR phagosomes. FcγIIA-stimulated NADPH oxidase activity was abrogated by point mutations in p40phox that disrupt PI(3)P binding, or by simultaneous mutations in the SH3 and PB1 domains. Consistent with an essential role for PI(3)P in regulating the oxidase complex, phagosome NADPH oxidase activation in primary macrophages ingesting IgG-coated beads was inhibited by phosphatidylinositol 3 kinase inhibitors to a much greater extent than phagocytosis itself. Hence, this study identifies a role for p40phox and PI(3)P in coupling FcγR-mediated phagocytosis to activation of the NADPH oxidase
    corecore