22 research outputs found

    Retinoid receptors and binding proteins

    Get PDF
    Skip to Next Section Retinoids, in particular all-trans retinoic acid (T-RA), are essential for normal development and homeostasis of vertebrates. Although many effects of retinoids, particularily with regard to teratogenicity, have been described in the literature, the mechanisms by which these simple signalling molecules work has only recently begun to be elucidated. We now recognize at least two classes of retinoid-binding proteins and two families of retinoid receptors. The ultimate interpretation of the retinoid signal within a given cell is probably the result of a complex series of interactions between these proteins, yet little is understood concerning the role each member of this signalling pathway plays. It is therefore imperative to dissect the molecular mechanisms which transduce the effects of these ligands, both in vivo and in isolated systems. One approach we are employing is gene targeting of retinoic acid receptors (RARs) and cellular retinoid-binding proteins to generate mice in which one or more of these genes has been functionally inactivated

    A Transgenic Mouse Model for Inducible and Reversible Dysmyelination

    No full text
    International audienceOligodendrocytes are glial cells devoted to the production of myelin sheaths. Myelination of the CNS occurs essentially after birth. To delineate both the times of oligodendrocyte proliferation and myelination, as well as to study the consequence of dysmyelination in vivo , a model of inducible dysmyelination was developed. To achieve oligodendrocyte ablation, transgenic animals were generated that express the herpes virus 1 thymidine kinase (HSV1-TK) gene under the control of the myelin basic protein (MBP) gene promoter. The expression of the MBP-TK transgene in oligodendrocytes is not toxic on its own; however, toxicity can be selectively induced by the systemic injection of animals with nucleoside analogs, such as FIAU [1-(2-deoxy-2-fluoro-β-δ-arabinofuranosyl)-5-iodouracil]. This system allows us to control the precise duration of the toxic insult and the degree of ablation of oligodendrocytes in vivo . We show that chronic treatment of MBP-TK mice with FIAU during the first 3 postnatal weeks triggers almost a total depletion of oligodendrocytes in the CNS. These effects are accompanied by a behavioral phenotype characterized by tremors, seizures, retarded growth, and premature animal death. We identify the period of highest oligodendrocytes division in the first 9 postnatal days. Delaying the beginning of FIAU treatments results in different degrees of dysmyelination. Dysmyelination in MBP-TK mice is always accompanied by astrocytosis. Thus, this transgenic line provides a model to study the events occurring during dysmyelination of various intensities. It also represents an invaluable tool to investigate remyelination in vivo

    Impairing follicle-stimulating hormone (FSH) signaling in vivo: Targeted disruption of the FSH receptor leads to aberrant gametogenesis and hormonal imbalance

    No full text
    Pituitary gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone stimulate the gonads by regulating germ cell proliferation and differentiation. FSH receptors (FSH-Rs) are localized to testicular Sertoli cells and ovarian granulosa cells and are coupled to activation of the adenylyl cyclase and other signaling pathways. Activation of FSH-Rs is considered essential for folliculogenesis in the female and spermatogenesis in the male. We have generated mice lacking FSH-R by homologous recombination. FSH-R-deficient males are fertile but display small testes and partial spermatogenic failure. Thus, although FSH signaling is not essential for initiating spermatogenesis, it appears to be required for adequate viability and motility of the sperms. FSH-R-deficient females display thin uteri and small ovaries and are sterile because of a block in folliculogenesis before antral follicle formation. Although the expression of marker genes is only moderately altered in FSH-R −/− mice, drastic sex-specific changes are observed in the levels of various hormones. The anterior lobe of the pituitary gland in females is enlarged and reveals a larger number of FSH- and thyroid-stimulating hormone (TSH)-positive cells. The phenotype of FSH-R −/− mice is reminiscent of human hypergonadotropic ovarian dysgenesis and infertility

    Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse

    No full text
    The DNA damage-dependent poly(ADP-ribose) polymerases, PARP-1 and PARP-2, homo- and heterodimerize and are both involved in the base excision repair (BER) pathway. Here, we report that mice carrying a targeted disruption of the PARP-2 gene are sensitive to ionizing radiation. Following alkylating agent treatment, parp-2(–/–)-derived mouse embryonic fibroblasts exhibit increased post-replicative genomic instability, G(2)/M accumulation and chromosome mis-segregation accompanying kinetochore defects. Moreover, parp-1(–/–)parp-2(–/–) double mutant mice are not viable and die at the onset of gastrulation, demonstrating that the expression of both PARP-1 and PARP-2 and/or DNA-dependent poly(ADP-ribosyl) ation is essential during early embryogenesis. Interestingly, specific female embryonic lethality is observed in parp-1(+/–)parp-2(–/–) mutants at E9.5. Meta phase analyses of E8.5 embryonic fibroblasts highlight a specific instability of the X chromosome in those females, but not in males. Together, these results support the notion that PARP-1 and PARP-2 possess both overlapping and non-redundant functions in the maintenance of genomic stability

    Requirement of poly(ADP-ribose) polymerase in recovery from DNA damage in mice and in cells

    No full text
    Poly(ADP-ribose) polymerase [PARP; NAD(+) ADP-ribosyltransferase; NAD(+): poly(adenosine-diphosphate-d-ribosyl)-acceptor ADP-d-ribosyltransferase, EC 2.4.2.30] is a zinc-finger DNA-binding protein that detects specifically DNA strand breaks generated by genotoxic agents. To determine its biological function, we have inactivated both alleles by gene targeting in mice. Treatment of PARP(−/−) mice either by the alkylating agent N-methyl-N-nitrosourea (MNU) or by γ-irradiation revealed an extreme sensitivity and a high genomic instability to both agents. Following whole body γ-irradiation (8 Gy) mutant mice died rapidly from acute radiation toxicity to the small intestine. Mice-derived PARP(−/−) cells displayed a high sensitivity to MNU exposure: a G(2)/M arrest in mouse embryonic fibroblasts and a rapid apoptotic response and a p53 accumulation were observed in splenocytes. Altogether these results demonstrate that PARP is a survival factor playing an essential and positive role during DNA damage recovery
    corecore