11 research outputs found
Controlled particle production by membrane emulsification for mammalian cell culture and release
Existing commercially available microcarriers are very efficient at encouraging cell attachment and proliferation. However, recovery of the cells is problematic as it requires the use of proteolytic enzymes which are damaging to critical cell adhesion proteins. From this perspective, temperature responsive polymers appear to be a valid option. The current innovative study is to produce and engineer microcarriers in terms of particle size, surface coating and properties, as well as thermo-responsiveness for cell release. All these benefits are based on particle production by membrane emulsification to provide a highly controlled particle size. The polymer of choice is poly N-isopropylacrylamide (pNIPAM) because of the sharpness of its phase transition, biocompatibility and transition temperature close to the physiological value. These characteristics make pNIPAM a very attractive material for Tissue Engineering applications. Cells are cultured on the hydrophobic surface at 37°C and can be readily detached without using proteolytic enzymes from the surface by lowering the temperature to room temperature.
The Dispersion Cell (MicroPore Technologies Ltd, UK) was successfully employed for the production of W/O emulsions. The generated monomer droplets were additionally solidified by applying a free radical polymerisation to manufacture solid pNIPAM microspheres. Additionally, calcium alginate particles were also generated and further functionalised with amine terminated pNIPAM to form temperature responsive core-shell particles by simply taking advantage of the electrostatic interactions between the carboxyl groups of the alginate and amino groups of the modified pNIPAM. Controlled particle production was achieved by varying process parameters and changing the recipe formulation (e.g. monomer concentration, surfactant concentration, pore size and inter-pore spacing, injection rate, shear stress applied at the membrane s surface). The manufactured particles were then analysed in terms of particle size and size distribution, chemical composition, surface analysis, shrinkage ratio and thermo-responsiveness and further sterilised and used for cell culture and release experiments.
Swiss Albino 3T3 fibroblastic cells (ATCC, USA) were utilised to show proof-of-concept for this technology. Cell attachment and proliferation were assessed and successfully demonstrated qualitatively and quantitatively. pNIPAM solid particles, uncoated and with different protein coatings were shown to allow a limited degree of cell attachment and proliferation compared to a commercially available microcarrier. On a different approach, uncoated core-shell structures demonstrated improved capabilities for cell attachment and proliferation, similar to commercially available microcarriers.
Having in mind the potential of temperature responsive polymers and the aim of this innovative study, cell detachment from the generated microcarriers was evaluated and compared to a commercially available temperature responsive surface. Necessary time for detachment was recorded and detached cells were recovered and reseeded onto tissue culture plastic surfaces in order to evaluate the replating and reattachment capabilities of the recovered cells. Successful cell detachment was achieved when using the core-shell structures as cell microcarriers, but the necessary time of detachment was of an order higher than that for the commercial temperature responsive surface
Expansion of human mesenchymal stem/stromal cells on temporary liquid microcarriers
BACKGROUND: Traditional large-scale culture systems for human mesenchymal stem/stromal cells (hMSCs) use solid microcarriers as attachment substrates. Although the use of such substrates is advantageous because of the high surface-to-volume ratio, cell harvest from the same substrates is a challenge as it requires enzymatic treatment, often combined with agitation. Here, we investigated a two-phase system for expansion and non-enzymatic recovery of hMSCs. Perfluorocarbon droplets were dispersed in a protein-rich growth medium and were used as temporary liquid microcarriers for hMSC culture. RESULTS: hMSCs successfully attached to these liquid microcarriers, exhibiting similar morphologies to those cultured on solid ones. Fold increases of 3.03 ± 0.98 (hMSC1) and 3.81 ± 0.29 (hMSC2) were achieved on day 9. However, the maximum expansion folds were recorded on day 4 (4.79 ± 0.47 (hMSC1) and 4.856 ± 0.7 (hMSC2)). This decrease was caused by cell aggregation upon reaching confluency due to the contraction of the interface between the two phases. Cell quality, as assessed by differentiation, cell surface marker expression and clonogenic ability, was retained post expansion on the liquid microcarriers. Cell harvesting was achieved non-enzymatically in two steps: first by inducing droplet coalescence and then aspirating the interface. Quality characteristics of hMSCs continued to be retained even after inducing droplet coalescence. CONCLUSION: The prospect of a temporary microcarrier that can be used to expand cells and then ‘disappear’ for cell release without using proteolytic enzymes is a very exciting one. Here, we have demonstrated that hMSCs can attach and proliferate on these perfluorocarbon liquid microcarriers while, very importantly, retaining their quality
Bioprocess development for scalable production of cultivated meat
Traditional farm-based products based on livestock are one of the main contributors to greenhouse gas emissions. Cultivated meat is an alternative that mimics animal meat, being produced in a bioreactor under controlled conditions rather than through the slaughtering of animals. The first step in the production of cultivated meat is the generation of sufficient reserves of starting cells. In this study, bovine adipose-derived stem cells (bASCs) were used as starting cells due to their ability to differentiate towards both fat and muscle, two cell types found in meat. A bioprocess for the expansion of these cells on microcarriers in spinner flasks was developed. Different cell seeding densities (1,500, 3,000, and 6,000 cells/cm 2) and feeding strategies (80%, 65%, 50%, and combined 80%/50% medium exchanges) were investigated. Cell characterization was assessed pre- and postbioprocessing to ensure that bioprocessing did not negatively affect bASC quality. The best growth was obtained with the lowest cell seeding density (1,500 cells/cm 2) with an 80% medium exchange performed (p '.0001) which yielded a 28-fold expansion. The ability to differentiate towards adipogenic, osteogenic, and chondrogenic lineages was retained postbioprocessing and no significant difference (p '.5) was found in clonogenicity pre- or postbioprocessing in any of the feeding regimes tested
Qualitative and quantitative demonstration of bead-to-bead transfer with bone marrow-derived human mesenchymal stem cells on microcarriers:utilising the phenomenon to improve culture performance
Human mesenchymal stem cells (hMSCs) are a key candidate for advanced cell therapies with numerous clinical trials investigating their potential to treat acute and chronic indications. However, important translational and manufacturing challenges need to be addressed to improve our capability for scalable production of fully functional cells. In this study, we have demonstrated, both qualitatively and quantitatively, the ability of bone marrow-derived hMSCs to migrate from one microcarrier to another, and, to populate fresh microcarriers when added into suspension culture. Additionally, we have shown that compared to inoculating a culture with cells in free suspension, inoculating 10% of near-confluent microcarriers from an initial seed microcarrier culture resulted in an increase in the cell growth rate and overall cell yield and a significant reduction in the lag phase. These findings were consistent across cells from three different BM-hMSC donors and across different culture medium conditions, foetal bovine serum-supplemented medium, human platelet lysate-supplemented medium and serum-free medium. This new cells-on-beads inoculation method is an effective means of process intensification with the potential to decrease manufacturing times and potentially costs of hMSC-based therapies
Experimental and computational fluid dynamics studies of adherent cells on microcarriers in an ambr® 250 bioreactor
Interest for microcarrier-based processes for the large-scale culture of adherent cells has recently grow, due to possible application in vaccine and cell therapy. This opportunity drives the need for effective, high-throughput, single-use, process development tools that can be translated successfully into industrial-scale systems. The automated ambr® 250 platform is one such technology, operating at a volume between 100 – 250mL, both high-throughput and single-use. The ambr250 has demonstrated significant success for suspension-based mammalian cell culture applications. However, additional investigations need to be performed on microcarrier-based processes for the culture of adherent cells. The fluid dynamics characteristics of the bioreactor must be sufficiently well understood to enable successful scale-up to larger scale bioreactors. Physical parameters such as fluid velocity, power number and shear stress are important for any cell culture. With microcarriers, there is an additional challenge as the fluid dynamics must take into account the presence of the particulate solid phase. A critical aspect for cell cultivation on microcarriers is the minimum agitator speed required to achieve complete microcarrier suspension, NJS. Under these conditions, the surface area of the attached cells is available for transfer of nutrients (including oxygen) to the cells and metabolites from them, whilst higher speeds hardly increase these transport processes and may lead to damaging fluid dynamic stresses being generated. It is also extremely beneficial to predict the flow dynamics of the stirred tank based on computational fluid dynamics (CFD). Once validated, CFD modelling is a very useful tool for analysing flow patterns, mixing time, mean and local specific energy dissipation rates, shear stress, and other parameters important for scale up in order to optimise the overall bioreactor geometry. In addition to the above fluid dynamic aspects, cell culture studies was also performed in parallel to analyse the cell growth at and around the minimum speed for microcarrier suspension, NJS. The CFD and experimental results with the single-use ambr250 bioreactor will be discussed in detail during the final presentation
Agitation conditions for the culture and detachment of hMSCs from microcarriers in multiple bioreactor platforms
In our recent work in different bioreactors up to 2.5L in scale, we have successfully cultured hMSCs using the minimum agitator speed required for complete microcarrier suspension, N JS. In addition, we also reported a scaleable protocol for the detachment from microcarriers in spinner flasks of hMSCs from two donors. The essence of the protocol is the use of a short period of intense agitation in the presence of enzymes such that the cells are detached; but once detachment is achieved, the cells are smaller than the Kolmogorov scale of turbulence and hence not damaged. Here, the same approach has been effective for culture at N JS and detachment in-situ in 15mL ambrâ„¢ bioreactors, 100mL spinner flasks and 250mL Dasgip bioreactors. In these experiments, cells from four different donors were used along with two types of microcarrier with and without surface coatings (two types), four different enzymes and three different growth media (with and without serum), a total of 22 different combinations. In all cases after detachment, the cells were shown to retain their desired quality attributes and were able to proliferate. This agitation strategy with respect to culture and harvest therefore offers a sound basis for a wide range of scales of operation
A liquid/liquid two phase system as an economic alternative for the large-scale expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs)
A liquid/liquid two phase system as an economic alternative for the large-scale expansion of bone marrow-derived human mesenchymal stem/stromal cells (hMSCs
Supplementary figures for "Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor"
Supplementary information files for "Process development of human multipotent stromal cell microcarrier culture using an automated high-throughput microbioreactor"<div><br></div><div><p><b>Figure S1</b>. Growth kinetics of hMSCs donor 2 cells using serum-free (SFM) and fetal bovine serum (FBS)-based media in both the ambr15 and spinner flasks with data showing the viable cell density.</p><p><br></p><p><b>Figure S2</b>. Nutrient and metabolite flux for hMSC donor 1 cells expanded on microcarriers in the serum-based and serum-free cultures in both the ambr and spinner flasks.</p><p><br></p><p><b>Figure S3</b>. Functional characterisation of hMSCs from donor 1 harvested from the serum-free ambr15 bioprocess.</p><p><br></p><h2>ABSTRACT</h2><p>Microbioreactors play a critical role in process development as they reduce reagent requirements and can facilitate high-throughput screening of process parameters and culture conditions. Here, we have demonstrated and explained in detail, for the first time, the amenability of the automated ambr15 cell culture microbioreactor system for the development of scalable adherent human mesenchymal multipotent stromal/stem cell (hMSC) microcarrier culture processes. This was achieved by first improving suspension and mixing of the microcarriers and then improving cell attachment thereby reducing the initial growth lag phase. The latter was achieved by using only 50% of the final working volume of medium for the first 24 h and using an intermittent agitation strategy. These changes resulted in >150% increase in viable cell density after 24 h compared to the original process (no agitation for 24 h and 100% working volume). Using the same methodology as in the ambr15, similar improvements were obtained with larger scale spinner flask studies. Finally, this improved bioprocess methodology based on a serum-based medium was applied to a serum-free process in the ambr15, resulting in >250% increase in yield compared to the serum-based process. At both scales, the agitation used during culture was the minimum required for microcarrier suspension, N<sub>JS</sub>. The use of the ambr15, with its improved control compared to the spinner flask, reduced the coefficient of variation on viable cell density in the serum containing medium from 7.65% to 4.08%, and the switch to serum free further reduced these to 1.06–0.54%, respectively. The combination of both serum-free and automated processing improved the reproducibility more than 10-fold compared to the serum-based, manual spinner flask process. The findings of this study demonstrate that the ambr15 microbioreactor is an effective tool for bioprocess development of hMSC microcarrier cultures and that a combination of serum-free medium, control, and automation improves both process yield and consistency.</p></div