26 research outputs found

    Novel Iron-Chelator DIBI Inhibits Staphylococcus aureus Growth, Suppresses Experimental MRSA Infection in Mice and Enhances the Activities of Diverse Antibiotics in vitro

    Get PDF
    DIBI, a purpose-designed hydroxypyridinone-containing iron-chelating antimicrobial polymer was studied for its anti-staphylococcal activities in vitro in comparison to deferiprone, the chemically related, small molecule hydroxypyridinone chelator. The sensitivities of 18 clinical isolates of Staphylococcus aureus from human, canine and bovine infections were determined. DIBI was strongly inhibitory to all isolates, displaying approximately 100-fold more inhibitory activity than deferiprone when compared on their molar iron-binding capacities. Sensitivity to DIBI was similar for both antibiotic-resistant and -sensitive isolates, including hospital- and community-acquired (United States 300) MRSA. DIBI inhibition was primarily bacteriostatic in nature at low concentration and was reversible by addition of Fe. DIBI also exhibited in vivo anti-infective activity in two distinct MRSA ATCC43300 infection and colonization models in mice. In a superficial skin wound infection model, topical application of DIBI provided a dose-dependent suppression of infection along with reduced wound inflammation. Intranasal DIBI reduced staphylococcal burden by >2 log in a MRSA nares carriage model. DIBI was also examined for its influence on antibiotic activities with a reference isolate ATCC6538, typically utilized to assess new antimicrobials. Sub-bacteriostatic concentrations of DIBI resulted in Fe-restricted growth and this physiological condition displayed increased sensitivity to GEN, CIP, and VAN. DIBI did not impair antibiotic activity but rather it enhanced overall killing. Importantly, recovery growth of survivors that typically followed an initial sub-MIC antibiotic killing phase was substantially suppressed by DIBI for each of the antibiotics examined. DIBI has promise for restricting staphylococcal infection on its own, regardless of the isolate’s animal source or antibiotic resistance profile. DIBI also has potential for use in combination with various classes of currently available antibiotics to improve their responses

    Molecular Epidemiology of Dengue Viruses Co-circulating in Upper Myanmar in 2006

    Get PDF
    To understand the molecular epidemiology of circulating dengue viruses (DENV) in Upper Myanmar, DENV isolation was attempted by inoculating the sera of a panel of 110 serum samples onto a C6/36 mosquito cell line. The samples were collected from dengue (DEN) patients admitted at Mandalay Children’s Hospital in 2006. Infected culture fluids were subjected to a RT-PCR to detect the DENV genome. Three DENV strains were isolated. This was the first DENV isolation performed either in Mandalay or in Upper Myanmar. One strain belonged to DENV serotype-3 (DENV-3), and two other strains belonged to DENV serotype-4 (DEN-4). The sequence data for the envelope gene of these strains were used in a phylogenetic comparison of DENV-3 and DENV-4 from various countries. Phylogenetic analyses revealed that this DENV-3 strain was clustered within genotype II, and the two DENV-4 strains were clustered within genotype I in each serotype. The Myanmar strains were closely related to strains from the neighboring countries of Thailand and Bangladesh. These results are important for elucidating the trends of recent and future DEN outbreaks in Myanmar

    Discovery of the First Insect Nidovirus, a Missing Evolutionary Link in the Emergence of the Largest RNA Virus Genomes

    Get PDF
    Nidoviruses with large genomes (26.3–31.7 kb; ‘large nidoviruses’), including Coronaviridae and Roniviridae, are the most complex positive-sense single-stranded RNA (ssRNA+) viruses. Based on genome size, they are far separated from all other ssRNA+ viruses (below 19.6 kb), including the distantly related Arteriviridae (12.7–15.7 kb; ‘small nidoviruses’). Exceptionally for ssRNA+ viruses, large nidoviruses encode a 3′-5′exoribonuclease (ExoN) that was implicated in controlling RNA replication fidelity. Its acquisition may have given rise to the ancestor of large nidoviruses, a hypothesis for which we here provide evolutionary support using comparative genomics involving the newly discovered first insect-borne nidovirus. This Nam Dinh virus (NDiV), named after a Vietnamese province, was isolated from mosquitoes and is yet to be linked to any pathology. The genome of this enveloped 60–80 nm virus is 20,192 nt and has a nidovirus-like polycistronic organization including two large, partially overlapping open reading frames (ORF) 1a and 1b followed by several smaller 3′-proximal ORFs. Peptide sequencing assigned three virion proteins to ORFs 2a, 2b, and 3, which are expressed from two 3′-coterminal subgenomic RNAs. The NDiV ORF1a/ORF1b frameshifting signal and various replicative proteins were tentatively mapped to canonical positions in the nidovirus genome. They include six nidovirus-wide conserved replicase domains, as well as the ExoN and 2′-O-methyltransferase that are specific to large nidoviruses. NDiV ORF1b also encodes a putative N7-methyltransferase, identified in a subset of large nidoviruses, but not the uridylate-specific endonuclease that – in deviation from the current paradigm - is present exclusively in the currently known vertebrate nidoviruses. Rooted phylogenetic inference by Bayesian and Maximum Likelihood methods indicates that NDiV clusters with roniviruses and that its branch diverged from large nidoviruses early after they split from small nidoviruses. Together these characteristics identify NDiV as the prototype of a new nidovirus family and a missing link in the transition from small to large nidoviruses

    Recombinant Truncated Nucleocapsid Protein as Antigen in a Novel Immunoglobulin M Capture Enzyme-Linked Immunosorbent Assay for Diagnosis of Severe Acute Respiratory Syndrome Coronavirus Infection

    No full text
    We report the development of an immunoglobulin M (IgM) antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for severe acute respiratory syndrome coronavirus (SARS-CoV) by using recombinant truncated SARS-CoV nucleocapsid protein as the antigen. The newly developed MAC-ELISA had a specificity and sensitivity of 100% as evaluated by using sera from healthy volunteers and patients with laboratory-confirmed SARS. Using serial serum samples collected from SARS patients, the times to seroconversion were determined by IgM antibody detection after SARS-CoV infection. The median time to seroconversion detection was 8 days (range, 5 to 17 days) after disease onset, and the seroconversion rates after the onset of illness were 33% by the first week, 97% by the second week, and 100% by the third week. Compared with the results of our previous report on the detection of IgG, the median seroconversion time by IgM detection was 3 days earlier and the seroconversion rate by the second week after the illness for IgM was significantly higher than by IgG assay. Our results indicating that the IgM response appears earlier than IgG after SARS-CoV infection in consistent with those for other pathogens. Our newly developed MAC-ELISA system offers a new alternative for the confirmation of SARS-CoV infection

    Evaluation of Inapparent Nosocomial Severe Acute Respiratory Syndrome Coronavirus Infection in Vietnam by Use of Highly Specific Recombinant Truncated Nucleocapsid Protein-Based Enzyme-Linked Immunosorbent Assay

    No full text
    Severe acute respiratory syndrome (SARS) is a recently emerged human disease associated with pneumonia. Inapparent infection with SARS coronavirus (CoV) is not well characterized. To develop a safe, simple, and reliable screening method for SARS diagnosis and epidemiological study, two recombinant SARS-CoV nucleocapsid proteins (N′ protein and NΔ(121) protein) were expressed in Escherichia coli, purified by affinity chromatography, and used as antigens for indirect, immunoglobulin G enzyme-linked immunosorbent assays (ELISA). Serum samples collected from healthy volunteers and SARS patients in Vietnam were used to evaluate the newly developed methods. The N′ protein-based ELISA showed a highly nonspecific reaction. The NΔ(121) protein-based ELISA, with a nonspecific reaction drastically reduced compared to that of the nearly-whole-length N′ protein-based ELISA, resulted in higher rates of positive reactions, higher titers, and earlier detection than the SARS-CoV-infected cell lysate-based ELISA. These results indicate that our newly developed SARS-CoV NΔ(121) protein-based ELISA is not only safe but also a more specific and more sensitive method to diagnose SARS-CoV infection and hence a useful tool for large-scale epidemiological studies. To identify inapparent SARS-CoV infections, serum samples collected from health care workers (HCWs) in Vietnam were screened by the NΔ(121) protein-based ELISA, and positive samples were confirmed by a virus neutralization test. Four out of 149 HCWs were identified to have inapparent SARS-CoV infection in Vietnam, indicating that subclinical SARS-CoV infection in Vietnam is rare but does exist

    The Footprint of Genome Architecture in the Largest Genome Expansion in RNA Viruses

    Get PDF
    The small size of RNA virus genomes (2-to-32 kb) has been attributed to high mutation rates during replication, which is thought to lack proof-reading. This paradigm is being revisited owing to the discovery of a 3′-to-5′ exoribonuclease (ExoN) in nidoviruses, a monophyletic group of positive-stranded RNA viruses with a conserved genome architecture. ExoN, a homolog of canonical DNA proof-reading enzymes, is exclusively encoded by nidoviruses with genomes larger than 20 kb. All other known non-segmented RNA viruses have smaller genomes. Here we use evolutionary analyses to show that the two- to three-fold expansion of the nidovirus genome was accompanied by a large number of replacements in conserved proteins at a scale comparable to that in the Tree of Life. To unravel common evolutionary patterns in such genetically diverse viruses, we established the relation between genomic regions in nidoviruses in a sequence alignment-free manner. We exploited the conservation of the genome architecture to partition each genome into five non-overlapping regions: 5′ untranslated region (UTR), open reading frame (ORF) 1a, ORF1b, 3′ORFs (encompassing the 3′-proximal ORFs), and 3′ UTR. Each region was analyzed for its contribution to genome size change under different models. The non-linear model statistically outperformed the linear one and captured >92% of data variation. Accordingly, nidovirus genomes were concluded to have reached different points on an expansion trajectory dominated by consecutive increases of ORF1b, ORF1a, and 3′ORFs. Our findings indicate a unidirectional hierarchical relation between these genome regions, which are distinguished by their expression mechanism. In contrast, these regions cooperate bi-directionally on a functional level in the virus life cycle, in which they predominantly control genome replication, genome expression, and virus dissemination, respectively. Collectively, our findings suggest that genome architecture and the associated region-specific division of labor leave a footprint on genome expansion and may limit RNA genome size
    corecore