17 research outputs found

    Safety and immunogenicity of three doses of an eleven-valent diphtheria toxoid and tetanus protein – conjugated pneumococcal vaccine in Filipino infants

    Get PDF
    BACKGROUND: An 11-valent pneumococcal conjugate vaccine could provide significantly larger reduction in pneumococcal disease burden than the currently available 7-valent vaccine formulation in many countries. METHODS: In total, 50 infants were enrolled to this open, uncontrolled study, which evaluated the safety and immunogenicity of an aluminium adjuvanted 11-valent mixed-carrier diphtheria toxoid or tetanus protein-conjugated vaccine (11-PncTD) when administered in three doses at 6, 10 and 14 weeks of age simultaneously with DTwP//PRP-T and OPV vaccines in Filipino infants. RESULTS: The rates of local reactions between the two injection sites, those associated with the 11-PncTD vaccine and those with the DTwP//PRP-T were almost of equal frequency for all three vaccine doses except for induration, which was significantly more common in the DTP//PRP-T injection site. Fever was present in 39%, 22% and 21% of infants following each of the three doses. Antibody responses were determined by an enzyme immunoassay method before the first vaccination and after the three doses. The vaccine elicited a significant anti-pneumococcal polysaccharide antibody response against all serotypes included in the vaccine, except for type 14, for which the pre-vaccination geometric mean antibody concentration (GMC) was high (1.61 μg/ml). The GMCs one month after the vaccination series ranged from 1.1 micrograms/ml for type 6B to 23.4 μg/ml for type 4. CONCLUSION: The 11-PncTD vaccine is safe, well-tolerated and immunogenic. The effectiveness of the non-adjuvanted formulation of the vaccine in preventing pneumonia is currently being evaluated in the Philippines

    Estimating the annual dengue force of infection from the age of reporting primary infections across urban centres in endemic countries.

    Get PDF
    BACKGROUND: Stratifying dengue risk within endemic countries is crucial for allocating limited control interventions. Current methods of monitoring dengue transmission intensity rely on potentially inaccurate incidence estimates. We investigated whether incidence or alternate metrics obtained from standard, or laboratory, surveillance operations represent accurate surrogate indicators of the burden of dengue and can be used to monitor the force of infection (FOI) across urban centres. METHODS: Among those who reported and resided in 13 cities across the Philippines, we collected epidemiological data from all dengue case reports between 2014 and 2017 (N 80,043) and additional laboratory data from a cross-section of sampled case reports (N 11,906) between 2014 and 2018. At the city level, we estimated the aggregated annual FOI from age-accumulated IgG among the non-dengue reporting population using catalytic modelling. We compared city-aggregated FOI estimates to aggregated incidence and the mean age of clinically and laboratory diagnosed dengue cases using Pearson's Correlation coefficient and generated predicted FOI estimates using regression modelling. RESULTS: We observed spatial heterogeneity in the dengue average annual FOI across sampled cities, ranging from 0.054 [0.036-0.081] to 0.249 [0.223-0.279]. Compared to FOI estimates, the mean age of primary dengue infections had the strongest association (ρ -0.848, p value<0.001) followed by the mean age of those reporting with warning signs (ρ -0.642, p value 0.018). Using regression modelling, we estimated the predicted annual dengue FOI across urban centres from the age of those reporting with primary infections and revealed prominent spatio-temporal heterogeneity in transmission intensity. CONCLUSIONS: We show the mean age of those reporting with their first dengue infection or those reporting with warning signs of dengue represent superior indicators of the dengue FOI compared to crude incidence across urban centres. Our work provides a framework for national dengue surveillance to routinely monitor transmission and target control interventions to populations most in need

    Serological Evidence of Widespread Zika Transmission across the Philippines.

    Get PDF
    Zika virus (ZIKV) exposure across flavivirus-endemic countries, including the Philippines, remains largely unknown despite sporadic case reporting and environmental suitability for transmission. Using laboratory surveillance data from 2016, 997 serum samples were randomly selected from suspected dengue (DENV) case reports across the Philippines and assayed for serological markers of short-term (IgM) and long-term (IgG) ZIKV exposure. Using mixture models, we re-evaluated ZIKV IgM/G seroprevalence thresholds and used catalytic models to quantify the force of infection (attack rate, AR) from age-accumulated ZIKV exposure. While we observed extensive ZIKV/DENV IgG cross-reactivity, not all individuals with active DENV presented with elevated ZIKV IgG, and a proportion of dengue-negative cases (DENV IgG-) were ZIKV IgG-positive (14.3%, 9/63). We identified evidence of long-term, yet not short-term, ZIKV exposure across Philippine regions (ZIKV IgG+: 31.5%, 314/997) which was geographically uncorrelated with DENV exposure. In contrast to the DENV AR (12.7% (95%CI: 9.1-17.4%)), the ZIKV AR was lower (5.7% (95%CI: 3-11%)) across the country. Our results provide evidence of widespread ZIKV exposure across the Philippines and suggest the need for studies to identify ZIKV infection risk factors over time to better prepare for potential future outbreaks

    A serological framework to investigate acute primary and post-primary dengue cases reporting across the Philippines.

    Get PDF
    BACKGROUND: In dengue-endemic countries, targeting limited control interventions to populations at risk of severe disease could enable increased efficiency. Individuals who have had their first (primary) dengue infection are at risk of developing more severe secondary disease, thus could be targeted for disease prevention. Currently, there is no reliable algorithm for determining primary and post-primary (infection with more than one flavivirus) status from a single serum sample. In this study, we developed and validated an immune status algorithm using single acute serum samples from reporting patients and investigated dengue immuno-epidemiological patterns across the Philippines. METHODS: During 2015/2016, a cross-sectional sample of 10,137 dengue case reports provided serum for molecular (anti-DENV PCR) and serological (anti-DENV IgM/G capture ELISA) assay. Using mixture modelling, we re-assessed IgM/G seroprevalence and estimated functional, disease day-specific, IgG:IgM ratios that categorised the reporting population as negative, historical, primary and post-primary for dengue. We validated our algorithm against WHO gold standard criteria and investigated cross-reactivity with Zika by assaying a random subset for anti-ZIKV IgM and IgG. Lastly, using our algorithm, we explored immuno-epidemiological patterns of dengue across the Philippines. RESULTS: Our modelled IgM and IgG seroprevalence thresholds were lower than kit-provided thresholds. Individuals anti-DENV PCR+ or IgM+ were classified as active dengue infections (83.1%, 6998/8425). IgG- and IgG+ active dengue infections on disease days 1 and 2 were categorised as primary and post-primary, respectively, while those on disease days 3 to 5 with IgG:IgM ratios below and above 0.45 were classified as primary and post-primary, respectively. A significant proportion of post-primary dengue infections had elevated anti-ZIKV IgG inferring previous Zika exposure. Our algorithm achieved 90.5% serological agreement with WHO standard practice. Post-primary dengue infections were more likely to be older and present with severe symptoms. Finally, we identified a spatio-temporal cluster of primary dengue case reporting in northern Luzon during 2016. CONCLUSIONS: Our dengue immune status algorithm can equip surveillance operations with the means to target dengue control efforts. The algorithm accurately identified primary dengue infections who are at risk of future severe disease

    Combining rapid diagnostic tests to estimate primary and post-primary dengue immune status at the point of care.

    Get PDF
    BACKGROUND: Characterising dengue virus (DENV) infection history at the point of care is challenging as it relies on intensive laboratory techniques. We investigated how combining different rapid diagnostic tests (RDTs) can be used to accurately determine the primary and post-primary DENV immune status of reporting patients during diagnosis. METHODS AND FINDINGS: Serum from cross-sectional surveys of acute suspected dengue patients in Indonesia (N:200) and Vietnam (N: 1,217) were assayed using dengue laboratory assays and RDTs. Using logistic regression modelling, we determined the probability of being DENV NS1, IgM and IgG RDT positive according to corresponding laboratory viremia, IgM and IgG ELISA metrics. Laboratory test thresholds for RDT positivity/negativity were calculated using Youden's J index and were utilized to estimate the RDT outcomes in patients from the Philippines, where only data for viremia, IgM and IgG were available (N:28,326). Lastly, the probabilities of being primary or post-primary according to every outcome using all RDTs, by day of fever, were calculated. Combining NS1, IgM and IgG RDTs captured 94.6% (52/55) and 95.4% (104/109) of laboratory-confirmed primary and post-primary DENV cases, respectively, during the first 5 days of fever. Laboratory test predicted, and actual, RDT outcomes had high agreement (79.5% (159/200)). Among patients from the Philippines, different combinations of estimated RDT outcomes were indicative of post-primary and primary immune status. Overall, IgG RDT positive results were confirmatory of post-primary infections. In contrast, IgG RDT negative results were suggestive of both primary and post-primary infections on days 1-2 of fever, yet were confirmatory of primary infections on days 3-5 of fever. CONCLUSION: We demonstrate how the primary and post-primary DENV immune status of reporting patients can be estimated at the point of care by combining NS1, IgM and IgG RDTs and considering the days since symptoms onset. This framework has the potential to strengthen surveillance operations and dengue prognosis, particularly in low resource settings

    Safety and immunogenicity of the killed bivalent (O1 and O139) whole-cell cholera vaccine in the Philippines

    No full text
    The killed bivalent (O1 and O139) whole cell oral cholera vaccine (OCV) (Shanchol™) was first licensed in India in 2009 and World Health Organization pre-qualified in 2011. We assessed the safety and immunogenicity of this OCV in the Philippines. This was a phase IV, single-arm, descriptive, open-label study. We recruited 336 participants from 2 centers: 112 participants in each age group (1–4, 5–14 and ≥ 15 years). Participants received 2 OCV doses 14 d apart. Safety was monitored throughout the trial. Blood samples were collected at baseline (pre-vaccination) and 14 d after each dose. Serum vibriocidal antibody titers to V. cholerae O1 (El Tor Inaba and El Tor Ogawa) and O139 strains were assessed, with seroconversion defined as ≥ 4-fold increase from baseline in titers. No immediate unsolicited systemic adverse events/reactions were observed. Unsolicited systemic adverse events were mostly grade 1 intensity. One serious adverse event occurred after the first dose, but was unrelated to vaccination. High seroconversion rates (range 69–92%) were achieved against the O1 serotypes with a trend toward higher rates in the 1–4 y (86–92%) and 5–14 y (86–88%) age groups than the ≥ 15 y age group (69–83%). Lower seroconversion rates were achieved against the O139 serotype (35–70%), particularly in those aged ≥ 15 y (35–42%). The 2-dose regimen of the killed bivalent whole cell OCV was well-tolerated in this study conducted in the Philippines, a cholera-endemic country. Robust immune responses were observed even after a single-dose

    Copyright 2000 by The American Society of Tropical Medicine and Hygiene INVASIVE BACTERIAL INFECTIONS OF CHILDREN IN A RURAL PROVINCE IN THE

    No full text
    Abstract. The etiology of invasive bacterial infections was studied among 956 Filipino children less than five years old who fulfilled the World Health Organization criteria for severe or very severe pneumonia or had suspected meningitis or sepsis. The most common invasive infections were due to Streptococcus pneumoniae (12 [1.3%]) and Haemophilus influenzae (12 [1.3%]); including four cases of pneumococcal meningitis and 11 cases of H. influenzae meningitis. Type 1 was the most common (six of the 12 isolates) of the pneumococcal serotypes. Serotypes/groups 1, 6, 14, and 23 accounted for 91.7 % of the invasive isolates. The majority of the H. influenzae strains from blood (10 out of 10) and cerebrospinal fluid (6 out of 7) were type b. Almost all of the invasive S. pneumoniae (9 out of 12) and H. influenzae (11 out of 12) infections were seen before one year of age, which stresses the need to investigate early immunization of children for H. influenzae type b and S. pneumoniae, as well as maternal immunization to maximize the potential of immunoprophylaxis

    Safety of primary immunization with a DTwP-HBV/Hib vaccine in healthy infants: a prospective, open-label, interventional, phase IV clinical study

    No full text
    Objective: This study aimed to assess the safety of a fully liquid DTwP-HBV/Hib pentavalent vaccine (EupentaTM) based on the occurrence of adverse events (AEs) following vaccination. Methods: This was a prospective, open-label, single-arm, interventional phase IV study. A single intramuscular injection of the study vaccine was administered to infants at approximately 6, 10, and 14 weeks of age, and an end-of-study follow-up visit was scheduled at 18 weeks. Results: In all, 3000 subjects were enrolled and received at least one dose of the study vaccine. Of these, 2717 (90.6%) experienced at least one AE. Immediate reactions, solicited and unsolicited AEs were respectively identified in 224 (7.5%), 2,652 (88.4%), and 1,099 (36.6%) subjects. The most prevalent solicited and unsolicited AEs comprised pain/tenderness and upper respiratory tract infection, respectively. Most AEs were mildly or moderately severe. Forty-one (1.4%) subjects had at least one serious AE (SAE); of these, two (0.1%) had two SAEs each, considered related to the study vaccine. Six (0.2%) subjects died due to unsolicited AEs, none of which were considered related to the study vaccine. No AEs were reported at the end-of-study follow-up visit. Conclusions: The study vaccine had a safety profile similar to that reported in a previous clinical study, and did not result in an increased risk of AEs known to be associated with DTwP-based vaccines or previously unrecognized SAEs

    Correlation of Cellular Immune Responses with Protection against Culture-Confirmed Influenza Virus in Young Children▿

    No full text
    The highly sensitive gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISPOT) assay permits the investigation of the role of cell-mediated immunity (CMI) in the protection of young children against influenza. Preliminary studies of young children confirmed that the IFN-γ ELISPOT assay was a more sensitive measure of influenza memory immune responses than serum antibody and that among seronegative children aged 6 to <36 months, an intranasal dose of 107 fluorescent focus units (FFU) of a live attenuated influenza virus vaccine (CAIV-T) elicited substantial CMI responses. A commercial inactivated influenza virus vaccine elicited CMI responses only in children with some previous exposure to related influenza viruses as determined by detectable antibody levels prevaccination. The role of CMI in actual protection against community-acquired, culture-confirmed clinical influenza by CAIV-T was investigated in a large randomized, double-blind, placebo-controlled dose-ranging efficacy trial with 2,172 children aged 6 to <36 months in the Philippines and Thailand. The estimated protection curve indicated that the majority of infants and young children with ≥100 spot-forming cells/106 peripheral blood mononuclear cells were protected against clinical influenza, establishing a possible target level of CMI for future influenza vaccine development. The ELISPOT assay for IFN-γ is a sensitive and reproducible measure of CMI and memory immune responses and contributes to establishing requirements for the future development of vaccines against influenza, especially those used for children
    corecore