803 research outputs found

    Multiple system atrophy is distinguished from idiopathic Parkinson's disease bythe arginine growth hormone stimulation test

    Get PDF
    Objective: Multiple system atrophy (MSA) may be difficult to distinguish from idiopathic Parkinson’s disease (PD). Our aim was to evaluate the accuracy of the arginine growth hormone (GH) stimulation test in distinguishing between MSA and PD in large populations of patients. Methods: We measured the GH response to arginine in 69 MSA (43 MSAp [parkinsonism as the main motor feature] and 26 MSAc [cerebellar features predominated]) patients, 35 PD patients, and 90 healthy control subjects. We used receiver-operating curve analysis to establish the arginine cutoff value that best differentiated between MSA and PD. Results: The GH response to arginine was significantly lower (p 0.01) in MSA than in either PD patients or control subjects. At a cutoff level of 4g/L, arginine distinguished MSAp from PD with a sensitivity and specificity of 91% and MSAc from PD with a sensitivity of 96% and specificity of 91%. The arginine test had a positive predictive value for MSA of 95%. The GH response to arginine was not affected by disease duration or severity, MSA motor subtype, pyramidal signs, response to dopaminergic therapy, or magnetic resonance imaging findings. Interpretation: The GH response to arginine differentiates MSA from PD with a high diagnostic accuracy. The results suggest an impairment of cholinergic central systems modulating GH release in MSA

    Dopaminergic Neuronal Imaging in Genetic Parkinson's Disease: Insights into Pathogenesis

    Get PDF
    Objectives:To compare the dopaminergic neuronal imaging features of different subtypes of genetic Parkinson's Disease.Methods:A retrospective study of genetic Parkinson's diseases cases in which DaTSCAN (123I-FP-CIT) had been performed. Specific non-displaceable binding was calculated for bilateral caudate and putamen for each case. The right:left asymmetry index and striatal asymmetry index was calculated.Results:Scans were available from 37 cases of monogenetic Parkinson's disease (7 glucocerebrosidase (GBA) mutations, 8 alpha-synuclein, 3 LRRK2, 7 PINK1, 12 Parkin). The asymmetry of radioligand uptake for Parkinson's disease with GBA or LRRK2 mutations was greater than that for Parkinson's disease with alpha synuclein, PINK1 or Parkin mutations.Conclusions:The asymmetry of radioligand uptake in Parkinsons disease associated with GBA or LRRK2 mutations suggests that interactions with additional genetic or environmental factors may be associated with dopaminergic neuronal loss
    corecore