41 research outputs found

    Type II secretion: from structure to function

    Full text link
    Gram-negative bacteria use the type II secretion system to transport a large number of secreted proteins from the periplasmic space into the extracellular environment. Many of the secreted proteins are major virulence factors in plants and animals. The components of the type II secretion system are located in both the inner and outer membranes where they assemble into a multi-protein, cell-envelope spanning, complex. This review discusses recent progress, particularly newly published structures obtained by X-ray crystallography and electron microscopy that have increased our understanding of how the type II secretion apparatus functions and the role that individual proteins play in this complex system.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74575/1/j.1574-6968.2006.00102.x.pd

    Mapping Critical Interactive Sites within the Periplasmic Domain of the Vibrio cholerae Type II Secretion Protein EpsMā–æ

    No full text
    The type II secretion (T2S) system is present in many gram-negative species, both pathogenic and nonpathogenic, where it supports the delivery of a variety of toxins, proteases, and lipases into the extracellular environment. In Vibrio cholerae, the T2S apparatus is composed of 12 Eps proteins that assemble into a multiprotein complex that spans the entire cell envelope. Two of these proteins, EpsM and EpsL, are key components of the secretion machinery present in the inner membrane. In addition to likely forming homodimers, EpsL and EpsM have been shown to form a stable complex in the inner membrane and to protect each other from proteolytic degradation. To identify and map the specific regions of EpsM involved in protein-protein interactions with both another molecule of EpsM and EpsL, we tested the interactions of deletion constructs of EpsM with full-length EpsM and EpsL by functional characterization and copurification as well as coimmunoprecipitation. Analysis of the truncated EpsM mutants revealed that the region of EpsM from amino acids 100 to 135 is necessary for EpsM to form homo-oligomers, while residues 84 to 99 appear to be critical for a stable interaction with EpsL

    Compromised Outer Membrane Integrity in Vibrio cholerae Type II Secretion Mutantsā–æ

    No full text
    The type II secretion (T2S) system of Vibrio cholerae is a multiprotein complex that spans the cell envelope and secretes proteins important for pathogenesis as well as survival in different environments. Here we report that, in addition to the loss of extracellular secretion, removal or inhibition of expression of the T2S genes, epsC-N, results in growth defects and a broad range of alterations in the outer membrane that interfere with its barrier function. Specifically, the sensitivity to membrane-perturbing agents such as bile salts and the antimicrobial peptide polymyxin B is increased, and periplasmic constituents leak out into the culture medium. As a consequence, the ĻƒE stress response is induced. Furthermore, due to the defects caused by inactivation of the T2S system, the Ī”eps deletion mutant of V. cholerae strain N16961 is incapable of surviving the passage through the infant mouse gastrointestinal tract. The growth defect and leaky outer membrane phenotypes are suppressed when the culture medium is supplemented with 5% glucose or sucrose, although the eps mutants remain sensitive to membrane-damaging agents. This suggests that the sugars do not restore the integrity of the outer membrane in the eps mutant strains per se but may provide osmoprotective functions

    Oligomerization of EpsE Coordinates Residues from Multiple Subunits to Facilitate ATPase Activity*

    No full text
    EpsE is an ATPase that powers transport of cholera toxin and hydrolytic enzymes through the Type II secretion (T2S) apparatus in the Gram-negative bacterium, Vibrio cholerae. On the basis of structures of homologous Type II/IV secretion ATPases and our biochemical data, we believe that EpsE is active as an oligomer, likely a hexamer, and the binding, hydrolysis, and release of nucleotide cause EpsE to undergo dynamic structural changes, thus converting chemical energy to mechanical work, ultimately resulting in extracellular secretion. The conformational changes that occur as a consequence of nucleotide binding would realign conserved arginines (Arg210, Arg225, Arg320, Arg324, Arg336, and Arg369) from adjoining domains and subunits to complete the active site around the bound nucleotide. Our data suggest that these arginines are essential for ATP hydrolysis, although their roles in shaping the active site of EpsE are varied. Specifically, we have shown that replacements of these arginine residues abrogate the T2S process due to a reduction of ATPase activity yet do not have any measurable effect on nucleotide binding or oligomerization of EpsE. We have further demonstrated that point mutations in the EpsE intersubunit interface also reduce ATPase activity without disrupting oligomerization, strengthening the idea that residues from multiple subunits must precisely interact in order for EpsE to be sufficiently active to support T2S. Our findings suggest that the action of EpsE is similar to that of other Type II/IV secretion ATPase family members, and thus these results may be widely applicable to the family as a whole

    Cell Envelope Perturbation Induces Oxidative Stress and Changes in Iron Homeostasis in Vibrio choleraeā–æ ā€ 

    No full text
    The Vibrio cholerae type II secretion (T2S) machinery is a multiprotein complex that spans the cell envelope. When the T2S system is inactivated, cholera toxin and other exoproteins accumulate in the periplasmic compartment. Additionally, loss of secretion via the T2S system leads to a reduced growth rate, compromised outer membrane integrity, and induction of the extracytoplasmic stress factor RpoE (A. E. Sikora, S. R. Lybarger, and M. Sandkvist, J. Bacteriol. 189:8484-8495, 2007). In this study, gene expression profiling reveals that inactivation of the T2S system alters the expression of genes encoding cell envelope components and proteins involved in central metabolism, chemotaxis, motility, oxidative stress, and iron storage and acquisition. Consistent with the gene expression data, molecular and biochemical analyses indicate that the T2S mutants suffer from internal oxidative stress and increased levels of intracellular ferrous iron. By using a tolA mutant of V. cholerae that shares a similar compromised membrane phenotype but maintains a functional T2S machinery, we show that the formation of radical oxygen species, induction of oxidative stress, and changes in iron physiology are likely general responses to cell envelope damage and are not unique to T2S mutants. Finally, we demonstrate that disruption of the V. cholerae cell envelope by chemical treatment with polymyxin B similarly results in induction of the RpoE-mediated stress response, increased sensitivity to oxidants, and a change in iron metabolism. We propose that many types of extracytoplasmic stresses, caused either by genetic alterations of outer membrane constituents or by chemical or physical damage to the cell envelope, induce common signaling pathways that ultimately lead to internal oxidative stress and misregulation of iron homeostasis

    Zinc coordination is essential for the function and activity of the type II secretion ATPase EpsE

    Full text link
    The type II secretion system Eps in Vibrio cholerae promotes the extracellular transport of cholera toxin and several hydrolytic enzymes and is a major virulence system in many Gramā€negative pathogens which is structurally related to the type IV pilus system. The cytoplasmic ATPase EpsE provides the energy for exoprotein secretion through ATP hydrolysis. EpsE contains a unique metalā€binding domain that coordinates zinc through a tetracysteine motif (CXXCX29CXXC), which is also present in type IV pilus assembly but not retraction ATPases. Deletion of the entire domain or substitution of any of the cysteine residues that coordinate zinc completely abrogates secretion in an EpsEā€deficient strain and has a dominant negative effect on secretion in the presence of wildā€type EpsE. Consistent with the in vivo data, chemical depletion of zinc from purified EpsE hexamers results in loss of in vitro ATPase activity. In contrast, exchanging the residues between the two dicysteines with those from the homologous ATPase XcpR from Pseudomonas aeruginosa does not have a significant impact on EpsE. These results indicate that, although the individual residues in the metalā€binding domain are generally interchangeable, zinc coordination is essential for the activity and function of EpsE.Type II secretion ATPases contain a unique zincā€binding domain which is absent from homologous type IV pilus retraction ATPases and type IV secretion ATPases. Removal of the entire zincā€binding domain or disruption of zinc coordination in the type II secretion ATPase EpsE abrogates secretion and prevents ATP hydrolysis, indicating that zinc coordination is essential for the function and activity of type II secretion ATPases.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134427/1/mbo3376_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134427/2/mbo3376.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134427/3/mbo3376-sup-0001-FigureS1-S4.pd
    corecore