25 research outputs found

    Development and Validation of an OMERACT MRI Whole-Body Score for Inflammation in Peripheral Joints and Entheses in Inflammatory Arthritis (MRI-WIPE)

    Get PDF
    Objective: To develop a whole-body MRI-scoring system for peripheral arthritis and enthesitis. Methods: After consensus on definitions/locations of MRI pathologies, four multi-reader exercises were performed. Eighty-three joints were scored 0-3 separately for synovitis and osteitis, thirty-three entheses 0-3 separately for soft tissue inflammation and osteitis. Results: In the last exercise, reliability was moderate-good for musculoskeletal radiologists and rheumatologists with previously demonstrated good scoring proficiency. Median pairwise single-measure/average-measure ICCs were 0.67/0.80 for status scores and 0.69/0.82 for change scores; kappas ranged 0.35-0.77. Conclusion: WBMRI scoring of peripheral arthritis and enthesitis is reliable which encourages further testing and refinement in clinical trials

    From Fibromuscular Dysplasia to Arterial Dissection And Back.

    Full text link
    peer reviewedFibromuscular dysplasia (FMD) is an idiopathic and systemic non-inflammatory and non-atherosclerotic arterial disease. Fifteen to 25 % of patients with FMD present with arterial dissection in at least one arterial bed. Conversely, a substantial number of patients with renal, carotid and visceral dissection have underlying FMD. Also, while few patients with FMD develop coronary artery dissection, lesions suggestive of multifocal FMD have been reported in 30 to 80% of patients with Spontaneous Coronary Artery Dissection (SCAD), and the relation between these two entities remains controversial. The frequent association of FMD with arterial dissection, both in coronary and extra-coronary arteries raises a number of practical and theoretical questions: (i) are FMD and arterial dissections two different facets of the same disease or distinct though related entities? (ii) is SCAD just a manifestation of coronary FMD or a different disease? (iii) What is the risk and which are predictive factors of developing arterial dissection in a patient with FMD? (iv) What proportion of patients who experienced an arterial dissection have underlying FMD, and does this finding influence the risk of subsequent arterial complications? In this review we will address these different questions using fragmentary, mostly cross-sectional evidence derived from large registries and studies from Europe and the United States, as well as arguments derived from demographics, clinical presentation, imaging, and when available histology and genetics. From there we will derive practical consequences for nosology, screening and follow-up

    Experimental diabetes induces functional and structural changes in the peritoneum.

    Get PDF
    BACKGROUND: Peritoneal dialysis (PD) is an established renal replacement therapy in diabetic patients, but the influence of diabetes on the peritoneal membrane (PM) remains debated. We have used functional, biochemical and molecular studies in vivo and in vitro to substantiate the changes induced by diabetes and hyperglycemia in the PM. METHODS: Peritoneal equilibration tests were performed 2, 4, and 6 weeks after induction of diabetes with streptozotocin (STZ) in rats. Morphological analyses, determination of nitric oxide synthase (NOS) activities, and expression studies for NOS isoforms and advanced glycation end products (AGE) were performed in parallel. Additional studies were conducted in diabetic rats treated with insulin, non-diabetic rats fed with urea, and cultured bovine aortic endothelial cells (BAEC). RESULTS: In comparison with controls, diabetic rats were characterized by: increased permeability for small solutes and decreased sodium sieving; capillary proliferation; increased endothelial NOS (eNOS) and AGE immunoreactivity; up-regulation of eNOS and down-regulation of neuronal NOS; and increased NOS activity in the PM. The changes, which culminated at week 6, were prevented by chronic insulin treatment in diabetic rats. In contrast to hyperglycemia, hyperosmolality alone did not induce functional or structural changes in the PM. Studies in BAEC showed that high glucose incubation led to increased activity and expression of eNOS, a prerequisite for vascular proliferation. CONCLUSIONS: These data demonstrate that chronic hyperglycemia is associated with functional and structural changes in the peritoneum that parallel with selective regulation of NOS isoforms and AGE deposits. The alterations are prevented by insulin treatment, which suggests that adequate control of diabetes can preserve PM integrity in diabetic patients prior to PD

    Inhibition of nitric oxide synthase reverses changes in peritoneal permeability in a rat model of acute peritonitis.

    Get PDF
    BACKGROUND: Acute peritonitis is the most frequent complication of peritoneal dialysis (PD), and nitric oxide (NO) is thought to play a role in the structural and permeability changes observed in this condition. We have used a combination of expression, enzymatic and pharmacological studies to substantiate the potential role(s) played by NO during peritonitis. METHODS: The peritoneal equilibration test was performed in control rats and rats with acute peritonitis (originating from skin flora), using standard dialysate supplemented or not with the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). In parallel, peritoneal NOS enzymatic activities were measured and expression studies for NOS isoforms and S-nitrosocysteine reactivity performed in the peritoneum. RESULTS: In comparison with controls, rats with acute peritonitis were characterized by inflammatory changes, increased S-nitrosocysteine immunoreactivity, and increased NOS activities in the peritoneum, due to the up-regulation of endothelial and inducible NOS. In parallel, rats with acute peritonitis showed increased permeability for small solutes; decreased sodium sieving; loss of ultrafiltration (UF); and increased protein loss in the dialysate. Addition of L-NAME to the dialysate did not induce permeability changes in control rats, but significantly improved UF and reversed permeability modifications in rats with peritonitis. The effect of L-NAME was reflected by a mild but consistent increase in blood pressure during PD exchange. CONCLUSIONS: Our results demonstrate that local generation of NO, secondary to up-regulation of NOS isoforms, plays an important role in the regulation of peritoneal permeability during acute peritonitis in rats. By itself, NOS inhibition improves UF and reverses permeability changes, which might offer new therapeutic perspectives in acute peritonitis

    Corticosteroids induce expression of aquaporin-1 and increase transcellular water transport in rat peritoneum.

    No full text
    The water channel aquaporin-1 (AQP1) is the molecular counterpart of the ultrasmall pore responsible for transcellular water permeability during peritoneal dialysis (PD). This water permeability accounts for up to 50% of ultrafiltration (UF) during a hypertonic dwell, and its loss can be a major clinical problem for PD patients. By analogy with the lung, the hypothesis was tested that corticosteroids may increase AQP1 expression in the peritoneal membrane (PM) and improve water permeability and UF in rats. First, the expression and distribution of the glucocorticoid receptor (GR) in the PM and capillary endothelium was documented. Time-course and dose-response analyses showed that a daily IM injection of dexamethasone (1 or 4 mg/kg) for 5 d induced an approximately twofold increase in the expression of AQP1 at the mRNA and protein levels. The GR antagonist RU-486 completely inhibited the dexamethasone effect. The functional counterpart of the increased AQP1 expression was a significant increase in sodium sieving and net UF across the PM, contrasting with a lack of effect on the osmotic gradient and permeability for small solutes. The latter observation reflected the lack of effect of corticosteroids on nitric oxide synthase (NOS) activity and endothelial NOS isoform expression in the PM. In conclusion, corticosteroids induce AQP1 expression in the capillary endothelium of the PM, which is reflected by increased transcellular water permeability and UF. These data emphasize the critical role of AQP1 during PD and suggest that pharmacologic regulation of AQP1 may provide a target for manipulating water permeability across the PM

    Diabetes-induced microvascular dysfunction in the hydronephrotic kidney: role of nitric oxide.

    Get PDF
    BACKGROUND: Renal hemodynamics in early diabetes are characterized by preglomerular and postglomerular vasodilation and increased glomerular capillary pressure, leading to hyperfiltration. Despite intensive research, the etiology of the renal vasodilation in diabetes remains a matter of debate. The present study investigated the controversial role of nitric oxide (NO) in the renal vasodilation in streptozotocin-induced diabetic rats. METHODS: In the renal microcirculation, basal tone and response to NO synthase blockade were studied using the in vivo hydronephrotic kidney technique. L-arginine analog N-nitro-L-arginine methyl ester (L-NAME) was administered locally to avoid confounding by systemic blood pressure effects. The expression of endothelial NO synthase (eNOS) was investigated in total kidney by immunocytochemistry and in isolated renal vascular trees by Western blotting. Urinary excretion of nitrites/nitrates was measured. RESULTS: Diabetic rats demonstrated a significant basal vasodilation of all preglomerular and postglomerular vessels versus control rats. Vasoconstriction to L-NAME was significantly increased in diabetic vessels. After high-dose L-NAME, there was no difference in diameter between diabetic and control vessels, suggesting that the basal vasodilation is mediated by NO. Immunocytochemically, the expression of eNOS was mainly localized in the endothelium of preglomerular and postglomerular vessels and glomerular capillaries, and was increased in the diabetic kidneys. Immunoblots on isolated renal vascular trees revealed an up-regulation of eNOS protein expression in diabetic animals. The urinary excretion of nitrites/nitrates was elevated in diabetic rats. CONCLUSION: The present study suggests that an up-regulation of eNOS in the renal microvasculature, resulting in an increased basal generation of NO, is responsible for the intrarenal vasodilation characteristic of early diabetes

    Chronic uremia induces permeability changes, increased nitric oxide synthase expression, and structural modifications in the peritoneum.

    No full text
    Advanced glycation end products (AGE), growth factors, and nitric oxide contribute to alterations of the peritoneum during peritoneal dialysis (PD). These mediators are also involved in chronic uremia, a condition associated with increased permeability of serosal membranes. It is unknown whether chronic uremia per se modifies the peritoneum before PD initiation. A rat model of subtotal nephrectomy was used to measure peritoneal permeability after 3, 6, and 9 wk, in parallel with peritoneal nitric oxide synthase (NOS) isoform expression and activity and structural changes. Uremic rats were characterized by a higher peritoneal permeability for small solutes and an increased NOS activity due to the up-regulation of endothelial and neuronal NOS. The permeability changes and increased NOS activities correlated with the degree of renal failure. Focal areas of vascular proliferation and fibrosis were detected in uremic rats, in relation with a transient up-regulation of vascular endothelial growth factor and basic fibroblast growth factor, as well as vascular deposits of the AGE carboxymethyllysine and pentosidine. Correction of anemia with erythropoietin did not prevent the permeability or structural changes in uremic rats. Thus, in this rat model, uremia induces permeability and structural changes in the peritoneum, in parallel with AGE deposits and up-regulation of specific NOS isoforms and growth factors. These data suggest an independent contribution of uremia in the peritoneal changes during PD and offer a paradigm to better understand the modifications of serosal membranes in uremia
    corecore