21 research outputs found

    Purinergic signals regulate daily s-phase cell activity in the ciliary marginal zone of the zebrafish retina

    Get PDF
    Regeneration and growth that occur in the adult teleost retina have been helpful in identifying molecular and cellular mechanisms underlying cell proliferation and differentiation. Here, it is reported that S-phase cell number, in the ciliary marginal zone (CMZ) of the adult zebrafish retina, exhibits day-night variations with a mid-light phase peak. Oscillations persist for 24 h in constant darkness (DD), suggesting control by a circadian component. However, variations in the S-phase nuclei number were rapidly dampened and not present during and after a second day in DD. An ADPβS treatment significantly enhanced S-phase activity at night to mid-light levels, as assessed by in vivo BrdU incorporation in a 2-h interval. Moreover, daylight increase in S-phase cell number was completely abolished when extracellular nucleotide levels or their extracellular hydrolysis by ectonucleoside triphosphate diphosphohydrolases (NTPDases) were significantly disrupted or when a selective antagonist of purinergic P2Y1 receptors was intraocularly injected before BrdU exposure. Extracellular nucleotides and NTPDase action were also important for maintaining nocturnal low levels of S-phase activity in the CMZ. Finally, we showed that mRNAs of NTPDases 1, 2 (3 isoforms), and 3 as well as of P2Y1 receptor are present in the neural retina of zebrafish. NTPDase mRNA expression exhibited a 2-fold increment in light versus dark conditions as assessed by quantitative RT-PCR, whereas P2Y1 receptor mRNA levels did not show significant day-night variations. This study demonstrates a key role for nucleotides, principally ADP as a paracrine signal, as well as for NTPDases, the plasma membrane—bound enzymes that control extracellular nucleotide concentration, for inducing S-phase cell entry in the CMZ—normally associated with retinal growth—throughout the light-dark cycle.Fil: Ricatti, Maria Jimena. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Battista, Ariadna Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Zorrilla Zubilete, María Aurelia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; ArgentinaFil: Faillace, Maria Paula. Universidad de Buenos Aires. Facultad de Medicina; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin

    Purinergic Signaling in the Retina: From Development to Disease

    Get PDF
    Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue\u27s responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed. © 2018 Elsevier Inc

    Extracellular ATP hydrolysis in Caco-2 human intestinal cell line

    Get PDF
    Extracellular nucleotides and nucleosides activate signaling pathways that play major roles in the physiology and pathophysiology of the gastrointestinal tract. Ectonucleotidases hydrolyze extracellular nucleotides and thus regulate ligand exposure to purinergic receptors. In this study, we investigated the expression, localization and activities of ectonucleotidases using Caco-2 cells, a model of human intestinal epithelial cells. In addition, by studying ATP release and the rates of extracellular ATP (eATP) hydrolysis, we analyzed the contribution of these processes to the regulation of eATP in these cells. Results show that Caco-2 cells regulate the metabolism of eATP and by-products by ecto-nucleoside triphosphate diphosphohydrolase-1 and -2, a neutral ecto-phosphatase and ecto-5′-nucleotidase. All these ectoenzymes were kinetically characterized using intact cells, and their presence confirmed by denatured and native gels, western blot and cytoimmunofluorescence techniques. In addition, regulation of eATP was studied by monitoring the dynamic balance between intracellular ATP release and ectoATPase activity. Following mechanical and hypotonic stimuli, Caco-2 cells triggered a strong but transient release of intracellular ATP, with almost no energy cost, leading to a steep increase of eATP concentration, which was later reduced by ectoATPase activity. A data-driven algorithm allowed quantifying and predicting the rates of ATP release and ATP consumption contributing to the dynamic accumulation of ATP at the cell surface.Fil: Schachter, Julieta. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Alvarez, Cora Lilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Bazzi, Zaher. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Faillace, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Corradi, Gerardo Raul. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Hattab, C.. Universite de Paris. Institut National de la Transfusion Sanguine.; FranciaFil: Rinaldi, Debora Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gonzalez-Lebrero, Rodolfo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Pucci Molineris, Melisa Eliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner". Universidad Nacional de la Plata. Facultad de Ciencias Médicas. Instituto de Investigaciones Bioquímicas de La Plata "Prof. Dr. Rodolfo R. Brenner"; ArgentinaFil: Sévigny, J.. Laval University; CanadáFil: Ostuni, M. A.. Universite de Paris; Francia. Universite Paris D. Diderot - Paris 7. French National Institute Of Blood Transfusion.; FranciaFil: Schwarzbaum, Pablo Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; Argentin

    Conditioned Place Preference and Behavioral Analysis to Evaluate Nicotine Reinforcement Properties in Zebrafish

    No full text
    Studies with mice and rats have demonstrated that nicotine induces a Pavlovian conditioning denominated conditioned place preference (CPP). This behavioral paradigm is performed by exposing an animal to a drug in a particular environment. If the animal associates the drug (unconditioned stimulus) with the place where the drug is administrated (conditioned stimulus), a CPP is established. Similarly, zebrafish have also been used as a model system to identify factors infl uencing nicotine-associated reward. The protocol described here was designed to establish nicotine-CPP in zebrafi sh by using a biased approach. Moreover, pros and cons of using biased vs. unbiased design are also discussed. The protocol design is based in the establishment of nicotine/environment associations (nicotine-paired group). Since nicotine exerts anxiolytic effects, we used a counterbalanced nicotine-exposed control group, which did not show a significantplace preference shift, providing evidence that the preference shift in the nicotine-paired group was not due to a reduction of aversion for the initially aversive compartment. Nicotine-induced place preference in zebrafish was corroborated by behavioral analysis of several indicators of drug preference, such as time spent in the drug-paired side, number of entries to the drug paired side, and distance traveled. This method provided further evidence that zebrafish actually develop a preference for nicotine, although the drug was administrated in an aversive place for the fish. This methodology offers an incremental value to the drug addiction field, because it describes behavioral features associated to nicotine-induced CPP in zebrafish. Therefore, this model is useful to screen for exogenous and endogenous molecules involved in nicotine-associated reward in vertebrates.Fil: Faillace, Maria Paula. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Bernabeu, Ramon Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentin

    Effects of combined nicotine and fluoxetine treatment on adult hippocampal neurogenesis and conditioned place preference

    Get PDF
    Adult neurogenesis occurs in mammals within the dentate gyrus, a hippocampal subarea. It is known to be induced by antidepressant treatment and reduced in response to nicotine administration. We checked here whether the antidepressant fluoxetine would inverse the decrease in hippocampal neurogenesis caused by nicotine. It is shown that repeated, but not a single injection of rats with fluoxetine was able to abolish the decrease in adult dentate cell proliferation produced by nicotine treatment. We measured the expression of several biochemical parameters known to be associated with neurogenesis in the dentate gyrus. Both drugs increased the expression of p75 neurotrophin receptor, which promotes proliferation and early maturation of dentate gyrus cells. Using the conditioned place preference (CPP) paradigm, we also gave both drugs in a context in which their rewarding properties could be measured. Fluoxetine produced a significant but less robust CPP than nicotine. A single injection of fluoxetine was found to reduce nicotine-induced CPP. Moreover, the rewarding properties of nicotine were completely abolished in response to repeated fluoxetine injections. Expression of nicotine-induced CPP was accompanied by an increase of phospho-CREB (cyclic AMP-responsive element-binding protein) and HDAC2 (histone deacetylase 2) expression in the nucleus accumbens. The data suggest that fluoxetine reward, as opposed to nicotine reward, depends on dentate gyrus neurogenesis. Since fluoxetine was able to disrupt the association between nicotine and the environment, this antidepressant may be tested as a treatment for nicotine addiction using cue exposure therapy.Fil: Faillace, Maria Paula. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentina. Universidad de Buenos Aires; ArgentinaFil: Zwiller, J.. Universite de Strasbourg; Francia. Centre National de la Recherche Scientifique; FranciaFil: Bernabeu, Ramon Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentina. Universidad de Buenos Aires; Argentin

    Pre-exposure to nicotine with nocturnal abstinence induces epigenetic changes that potentiate nicotine preference

    No full text
    Prior exposure to drugs of abuse may facilitate addiction. It has been described that pre-exposure to nicotine can increase or, contrarily, prevent conditioned place preference (CPP). Here, we evaluated the effect of nicotine pre-exposure on CPP performance using an original protocol mimicking smokers’ behaviour in zebrafish. We simulated nicotine withdrawal at sleep time by exposing zebrafish to nicotine during daylight but not at night (D/N) for 14 days and then performed nicotine-CPP in zebrafish. D/N-nicotine-treated zebrafish obtained the highest CPP score, whereas zebrafish pre-exposed continuously to nicotine did not show nicotine-CPP. Evaluation of locomotor activity, seeking and anxiety-like behaviours supported the CPP findings. Nicotinic receptor subunit gene expression showed significant increases in the brain of zebrafish exposed to nicotine. Zebrafish exposed to D/N-nicotine showed further increases of α6- and α7-subunit expression after CPP establishment. Inhibition of histone acetylation by phenylbutyrate prevented nicotine-CPP. Transcriptional expression of epigenetic enzymes controlling histone acetylation/deacetylation and DNA methylation/demethylation was widely modified in brain portions containing reward areas of zebrafish exposed to D/N-nicotine after CPP. Zebrafish exposed to D/N-nicotine showed high levels of acetylated histone 3 and pCREB immunoreactivity differentially found in nuclei of the dopaminergic reward circuit in zebrafish homologous to the ventral tegmental area, nucleus accumbens and dorsal habenula. Our findings demonstrated that repetitive abstinent periods are risky factors for drug abuse that potentiate nicotine–environment associations and seeking. Brain modifications can persist long after nicotine use and are likely due to changes in the transcriptional expression of enzymes regulating drug reward-related gene expression via epigenetic modifications.Fil: Pisera Fuster, Antonella. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Faillace, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; ArgentinaFil: Bernabeu, Ramon Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Fisiología y Biofísica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Fisiología y Biofísica Bernardo Houssay; Argentin

    Evaluation of the rewarding properties of nicotine and caffeine by implementation of a five-choice conditioned place preference task in zebrafish

    No full text
    The rewarding properties of drugs in zebrafish can be studied using the conditioned place preference (CPP) paradigm. Most devices that have been used for CPP consist of two-half tanks with or without a central chamber. Here we evaluated the rewarding effects of nicotine and caffeine using a tank with five arms distributed radially from a central chamber that we have denoted Fish Tank Radial Maze (FTRM). Zebrafish were trained to associate nicotine or caffeine with a coloured arm. In testing sessions to assess CPP induction, between two and five different arms were available to explore. We found that when offering the two arms, one of them associated to the drug mediating conditioning for 14 days, zebrafish showed nicotine-induced CPP but not caffeine-induced CPP. When zebrafish had the option to explore drug-paired arms together with new coloured arms as putative distractors, the nicotine-CPP strength was maintained for at least three days. The presence of novel environments induced caffeine-CPP, which was still positive after three days of testing sessions. Complementary behavioural data supported these findings. Nicotine-CPP was prevented by the histone deacetylase inhibitor phenylbutyrate administered during conditioning; however, there were no effects on caffeine-CPP. The specific acetylation of lysine 9 in histone 3 (H3-K9) was increased in nicotine-conditioned zebrafish brains. This study suggests that novel environmental cues facilitate drug-environment associations, and hence, the use of drugs of abuse.Fil: Faillace, Maria Paula. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Pisera Fuster, Antonella. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; ArgentinaFil: Bernabeu, Ramon Oscar. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Houssay. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay. Universidad de Buenos Aires. Facultad de Medicina. Instituto de FisiologĂ­a y BiofĂ­sica Bernardo Houssay; Argentin

    Nicotinic receptor subunit mRNA expression level was identified by RT-qPCR in the zebrafish brain.

    No full text
    <p>Panel a) represents fold change of mRNA expression for each nicotinic receptor subunit tested in saline control (white bar) and nicotine-unpaired (counterbalanced) group of zebrafish (patterned bars). Panel b) depicts mRNA expression of nicotinic subunits examined in saline control (white bar) and nicotine-paired (associated to the white chamber) groups of zebrafish (patterned bars). RNA was purified from pools of three brains each obtained from control or nicotine-treated animals. Fold change represents mean ± SD, from three independent experiments of the relative expression ratio, that is the initial fluorescence amount in the sample of interest (nicotine-paired or nicotine-unpaired zebrafish brain) relative to a calibrator sample (saline control zebrafish brain) normalized to an internal reference gene (β-actin). Control value for each type of subunit equals 1 after normalization. Fold change was calculated by “Gene expression’s C<sub>T</sub> Difference” method (see Methods). *p<0.05 by using non parametric Mann Whitney test.</p

    Total distance swum in the brown or the white compartment during each conditioning day.

    No full text
    <p><b><b><i>a)</i></b></b> Shows the total distance swum in the brown compartment on days 1, 2 and 3 of the conditioning session by each of the three groups of zebrafish (saline, nicotine-unpaired, nicotine-paired). <b><i>b</i></b>) Displays the total distance swum in the white compartment on days 1, 2 and 3 during conditioning. <b><i>c) to e)</i></b> The total distance swum was measured minute-to-minute during the whole conditioning session (20 min) and plotted for days 1, 2 and 3 (c, d and e), in the white chamber and in the brown chamber (upper right inset in c, d and e). <b><i>f)</i></b> Comparison between saline control and nicotine-treated groups in distance swum each day of conditioning in the brown and white compartments. During conditioning, nicotine-paired zebrafish were exposed to nicotine in the white compartment. The nicotine-unpaired group was exposed to nicotine in both sides (days 1 and 3 in the brown and day 2 in the white). Data are presented as mean ± SEM. *<i>p</i><0.05; **<i>p</i><0.01 and ***p<0.001 between control and nicotine-paired groups. <sup>#</sup><i>p</i><0.05 between nicotine-unpaired and nicotine-paired animals in the white compartment. +<i>p</i><0.05 between nicotine-unpaired and control. Control (C) = saline n = 15; Nic-unpaired (NU) = counterbalanced nicotine n = 12; and Nic-paired (NP) = nicotine-associated to the white compartment n = 21.</p

    Baseline preference and conditioned place preference (CPP).

    No full text
    <p>Figure <b><i>a)</i></b> Amount of time spent by naïve zebrafish in the white or brown compartment of the CPP tank during 5 min in a drug-free pretest. <b><i>b)</i></b> CPP establishment at different nicotine concentrations 0 (control), 15, 30 and 50 mg/L. CPP score was calculated as % of time spent in the drug-paired side after drug exposure (test) minus % of time spent on the drug-paired side before drug exposure (pretest) over a 300 s time period. <b><i>c)</i></b> Shows 15 mg/L nicotine-CPP scores for nicotine-paired, nicotine-unpaired and saline control groups at different time points after a 5 min interval of habituation. <b><i>d)</i></b> Shows the percentage of time spent in the white compartment during pretest and test sessions for individual zebrafish from the 3 groups. Data are presented as mean ± SEM. 0 mg/L (control) n = 15; nicotine-unpaired n = 12; nicotine-paired: 15 mg/L n = 21, 30 mg/L n = 12, and 50 mg/L n = 12. ** <i>p</i><0.01, ***<i>p</i><0.001 nicotine-paired <i>vs</i>. control and ## <i>p</i><0.01, ### <i>p</i><0.001 nicotine-paired <i>vs</i> nicotine-unpaired.</p
    corecore