11 research outputs found

    The Role of IL-33/ST2 Pathway in Tumorigenesis

    No full text
    Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies

    Activity level, apoptosis, and development of cachexia in ApcMin/+ mice

    No full text
    Criteria for diagnosing cachexia in adults include unintentional loss in body weight, decreased strength, fatigue, anorexia, and low muscle mass. Cachexia is also associated with systemic inflammation, altered metabolism, and anemia. The ApcMin/+ mouse is a model of cachexia directly related to intestinal tumor burden and subsequent chronic inflammation. These mice also demonstrate muscle weakness, fatigue, decreased volitional activity, and elevated circulating IL-6 levels. The purpose of this study was to determine the time course of changes in physical activity and their relationship to anemia, muscle apoptosis, and muscle mass and body mass loss during cachexia. A subset of male ApcMin/+ mice were given access to voluntary activity wheels from 5 to 26 wk of age, while sedentary male ApcMin/+ mice were housed in cages lacking wheels. At the study's end mice were stratified by cachectic symptoms. Severely cachectic mice had decreased wheel running performance at 15 wk of age, while anemia and body weight loss were not present until 18 wk of age. Severely cachectic mice had lower hemoglobin levels compared with mildly cachectic mice at 13, 18, and 22 wk of age. Severely cachectic mice also demonstrated threefold more BCL2-associated X protein (BAX) protein in the gastrocnemius muscle at 26 wk of age compared with mildly cachectic mice. In sedentary ApcMin/+ mice at 26 wk of age anemia was present, and markers of apoptosis were induced in severely cachectic muscle. Proapoptotic protein expression was induced in both red and white portions of gastrocnemius muscle as well as in soleus muscle of severely cachectic mice compared with mildly cachectic mice. These data demonstrate that decrements in wheel running performance precede loss of body mass and that inherent muscle oxidative capacity is not protective against muscle apoptosis

    Role of N-terminal residues in the ubiquitin-independent degradation of human thymidylate synthase

    No full text
    Thymidylate synthase (TS) catalyses the reductive methylation of dUMP to form dTMP, a reaction that is essential for maintenance of nucleotide pools during cell growth. Because the enzyme is indispensable for DNA replication in actively dividing cells, it is an important target for cytotoxic drugs used in cancer chemotherapy, including fluoropyrimidines (e.g. 5-fluorouracil and 5-fluoro-2′-deoxyuridine) and anti-folates (e.g. raltitrexed, LY231514, ZD9331 and BW1843U89). These drugs generate metabolites that bind to the enzyme's active site and inhibit catalytic activity, leading to thymidylate deprivation and cellular apoptosis. Ligand binding to TS results in stabilization of the enzyme and an increase in its intracellular concentration. Previously, we showed that degradation of the TS polypeptide is carried out by the 26 S proteasome in a ubiquitin-independent manner. Such degradation is directed by the disordered N-terminal region of the TS polypeptide, and is abrogated by ligand binding. In the present study, we have verified the ubiquitin-independent nature of TS proteolysis by showing that a ‘lysine-less’ polypeptide, in which all lysine residues were replaced by arginine, is still subject to proteasome-mediated degradation. In addition, we have mapped the structural determinants of intracellular TS degradation in more detail and show that residues at the N-terminal end of the molecule, particularly the penultimate amino acid Pro(2), play an important role in governing the half-life of the enzyme. This region is capable on its own of destabilizing an evolutionarily distinct TS molecule that normally lacks this domain, indicating that it functions as a degradation signal. Interestingly, degradation of an intrinsically unstable mutant form of TS, containing a Pro→Leu substitution at residue 303, is directed by C-terminal, rather than N-terminal, sequences. The implications of these findings for the control of TS expression, and for the regulation of protein degradation in general, are discussed
    corecore