6 research outputs found

    The microbiota of hematophagous ectoparasites collected from migratory birds.

    No full text
    Arthropod vectors are responsible for the transmission of human pathogens worldwide. Several arthropod species are bird ectoparasites, however, no study to date has characterized their microbiota as a whole. We sampled hematophagous ectoparasites that feed on migratory birds and performed 16S rRNA gene metabarcoding to characterize their microbial community. A total of 194 ectoparasites were collected from 115 avian hosts and classified into three groups: a) Hippoboscidae diptera; b) ticks; c) other arthropods. Metabarcoding showed that endosymbionts were the most abundant genera of the microbial community, including Wolbachia for Hippoboscidae diptera, Candidatus Midichloria for ticks, Wolbachia and Arsenophonus for the other arthropod group. Genera including pathogenic species were: Rickettsia, Borrelia, Coxiella, Francisella, Bartonella, Anaplasma. Co-infection with Borrelia-Rickettsia and Anaplasma-Rickettsia was also observed. A global overview of the microbiota of ectoparasites sampled from migratory birds was obtained with the use of 16S rRNA gene metabarcoding. A novel finding is the first identification of Rickettsia in the common swift louse fly, Crataerina pallida. Given their possible interaction with pathogenic viruses and bacteria, the presence of endosymbionts in arthropods merits attention. Finally, molecular characterization of genera, including both pathogenic and symbiont species, plays a pivotal role in the design of targeted molecular diagnostics

    miR-650 promotes motility of anaplastic thyroid cancer cells by targeting PPP2CA

    No full text
    PURPOSE: Aberrant expression of miRNAs is crucial in several tissues tumorigenesis including thyroid. Recent studies demonstrated that miR-650 plays different role depending on the cancer type. Herein, we investigated the role of miR-650 in thyroid carcinoma. METHODS: The expression of miR-650 was analyzed in human thyroid tissues by q-RT-PCR. Anaplastic (8505C, CAL62, SW1736) and papillary (TPC-1) thyroid cancer cell lines were used to dissect the role of miR-650 on malignant hallmarks of transformation. Label-free proteomic analysis was exploited to unravel the targets of miR-650, while luciferase reporter assay and functional experiments were performed to confirm a selected target. Spearman's rank correlation test was used to assess the association between miR-650 and its target in human thyroid cancer tissues. RESULTS: miR-650 is over-expressed in anaplastic (ATC) thyroid carcinoma where it enhances cell migration and invasion. Proteomic label-free and bioinformatics analysis revealed that the serine-threonine protein phosphatase 2 catalytic subunit alpha (PPP2CA) is a target of miR-650; these finding were confirmed by luciferase assay. Restoration of PPP2CA mRNA, deprived of its 3'UTR, is able to revert the malignant phenotype induced by miR-650 in HEK-293 cells. Importantly, PPP2CA is down-regulated in ATC tissues and is inversely correlated with miR-650. CONCLUSIONS: miR-650 displayed oncogenic activity in ATC cells through targeting PPP2CA phosphatase. These results suggest that miR-650/PPP2CA axis could be modulated to interfere with motile ability of thyroid carcinoma cells

    Coronavirus and paramyxovirus in bats from Northwest Italy

    Get PDF
    Background: Bat-borne virus surveillance is necessary for determining inter-species transmission risks and is important due to the wide-range of bat species which may harbour potential pathogens. This study aimed to monitor coronaviruses (CoVs) and paramyxoviruses (PMVs) in bats roosting in northwest Italian regions. Our investigation was focused on CoVs and PMVs due to their proven ability to switch host and their zoonotic potential. Here we provide the phylogenetic characterization of the highly conserved polymerase gene fragments. Results: Family-wide PCR screenings were used to test 302 bats belonging to 19 different bat species. Thirty-eight animals from 12 locations were confirmed as PCR positive, with an overall detection rate of 12.6% [95% CI: 9.3–16.8]. CoV RNA was found in 36 bats belonging to eight species, while PMV RNA in three Pipistrellus spp. Phylogenetic characterization have been obtained for 15 alpha- CoVs, 5 beta-CoVs and three PMVs; moreover one P. pipistrellus resulted co-infected with both CoV and PMV. A divergent alpha-CoV clade from Myotis nattereri SpA is also described. The compact cluster of beta-CoVs from R. ferrumequinum roosts expands the current viral sequence database, specifically for this species in Europe. To our knowledge this is the first report of CoVs in Plecotus auritus and M. oxygnathus, and of PMVs in P. kuhlii. Conclusions: This study identified alpha and beta-CoVs in new bat species and in previously unsurveyed Italian regions. To our knowledge this represents the first and unique report of PMVs in Italy. The 23 new bat genetic sequences presented will expand the current molecular bat-borne virus databases. Considering the amount of novel bat-borne PMVs associated with the emergence of zoonotic infections in animals and humans in the last years, the definition of viral diversity within European bat species is needed. Performing surveillance studies within a specific geographic area can provide awareness of viral burden where bats roost in close proximity to spillover hosts, and form the basis for the appropriate control measures against potential threats for public health and optimal management of bats and their habitats
    corecore