36 research outputs found

    Immune Modulation through 4-1BB Enhances SIV Vaccine Protection in Non-Human Primates against SIVmac251 Challenge

    Get PDF
    Costimulatory molecules play a central role in the development of cellular immunity. Understanding how costimulatory pathways can be directed to positively influence the immune response may be critical for the generation of an effective HIV vaccine. Here, we evaluated the ability of intravenous administration of a blocking monoclonal antibody (mAb) directed against the negative costimulatory molecule CTLA-4, and an agonist mAb directed against the positive costimulatory molecule 4-1BB, either alone or in combination, to augment intramuscular SIV DNA immunizations. We then tested the ability these of these responses to impact a high-dose SIVmac251 challenge. Following immunization, the groups infused with the anti-4-1BB mAb exhibited enhanced IFN-γ responses compared to the DNA vaccine only group. Interestingly, although CTLA-4 blockade alone did not enhance IFN-γ responses it did increase the proliferative capacity of the CD4+ and CD8+ T cells. The combination of both mAbs enhanced the magnitude of the polyfunctional CD8+ T cell response. Following challenge, the group that received both mAbs exhibited a significant, ∼2.0 log, decrease in plasma viral load compared to the naïve group the included complete suppression of viral load in some animals. Furthermore, the use of the CTLA-4 blocking antibody resulted in significantly higher viral loads during chronic infection compared to animals that received the 4-1BB mAb, likely due to the higher CD4+ T cell proliferative responses which were driven by this adjuvant following immunization. These novel studies show that these adjuvants induce differential modulation of immune responses, which have dramatically different consequences for control of SIV replication, suggesting important implications for HIV vaccine development

    Synergy between chemotherapeutic agents and CTLA-4 blockade in preclinical tumor models

    Get PDF
    Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) binding agent, has proven to be an effective monotherapy for metastatic melanoma and has shown antitumor activity in trials when administered with other therapeutic agents. We hypothesized that the combination of ipilimumab with chemotherapeutic agents, such as ixabepilone, paclitaxel, etoposide, and gemcitabine, may produce therapeutic synergy based on distinct but complementary mechanisms of action for each drug and unique cellular targets. This concept was investigated using a mouse homolog of ipilimumab in preclinical murine tumor models, including SA1N fibrosarcoma, EMT-6 mammary carcinoma, M109 lung carcinoma, and CT-26 colon carcinoma. Results of CTLA-4 blockade in combination with one of various chemotherapeutic agents demonstrate that synergy occurs in settings where either agent alone was not effective in inducing tumor regression. Furthermore, when combined with CTLA-4 blockade, ixabepilone, etoposide, and gemcitabine elicited prolonged antitumor effects in some murine models with induction of a memory immune response. Future investigations are warranted to determine which specific chemo-immunotherapy combinations, if any, will produce synergistic antitumor effects in the clinical setting

    Synergistic activity of ixabepilone plus other anticancer agents: preclinical and clinical evidence

    No full text
    Ixabepilone demonstrates marked synergistic activity in combination with capecitabine, which served as the rationale for the evaluation of this combination in the clinic. Ixabepilone plus capecitabine is currently approved for patients with locally advanced or metastatic breast cancer (MBC) progressing after treatment with an anthracycline and a taxane; approval was based on the results of two phase III trials comparing the combination with capecitabine monotherapy. An array of preclinical studies in multiple solid tumor types show that ixabepilone demonstrates therapeutic synergy with targeted therapies including trastuzumab, bevacizumab, brivanib, and cetuximab; with immune-modulating agents such as anti-CTLA-4 antibody; and with other chemotherapy drugs such as irinotecan and epirubicin. Notably, experiments in several xenograft models show that ixabepilone provides greater antitumor synergism when combined with bevacizumab than either paclitaxel or nab-paclitaxel combined with bevacizumab. These preclinical findings provide a foundation for ongoing phase II clinical trials using ixabepilone in combination with trastuzumab or lapatinib in HER2-positive breast cancer; with bevacizumab in breast cancer, endometrial cancer, renal cancer, and non-small cell lung cancer (NSCLC); with cetuximab in breast cancer, NSCLC, and pancreatic cancer; and with brivanib, dasatinib, sorafinib, sunitinib, or vorinostat in MBC. Preliminary results from several of these trials suggest that ixabepilone-based combinations have promising anticancer activity

    A structured light-based system for scanning subcutaneous tumors in laboratory animals

    No full text
    Tumor size or volume is often the primary endpoint in preclinical efficacy studies of anticancer drugs. Efficient and accurate measurement of such tumors is crucial to rapid evaluation of novel drug candidates. Currently available techniques for acquiring high-throughput data on tumor volume are time-consuming and prone to various inaccuracies and errors. The laser-scanning technology we describe here provides a convenient, high-throughput system for tumor measurement that reduces interoperator variability and bias while providing automated data collection, processing and analysis

    Cancer Immunotherapy with Immunomodulatory Anti-CD137 and Anti-PD-1 Monoclonal Antibodies Requires BATF3-Dependent Dendritic Cells

    Get PDF
    UNLABELLED: Weak and ineffective antitumor cytotoxic T lymphocyte (CTL) responses can be rescued by immunomodulatory mAbs targeting PD-1 or CD137. Using Batf3(-/-) mice, which are defective for cross-presentation of cell-associated antigens, we show that BATF3-dependent dendritic cells (DC) are essential for the response to therapy with anti-CD137 or anti-PD-1 mAbs. Batf3(-/-) mice failed to prime an endogenous CTL-mediated immune response toward tumor-associated antigens, including neoantigens. As a result, the immunomodulatory mAbs could not amplify any therapeutically functional immune response in these mice. Moreover, administration of systemic sFLT3L and local poly-ICLC enhanced DC-mediated cross-priming and synergized with anti-CD137- and anti-PD-1-mediated immunostimulation in tumor therapy against B16-ovalbumin-derived melanomas, whereas this function was lost in Batf3(-/-) mice. These experiments show that cross-priming of tumor antigens by FLT3L- and BATF3-dependent DCs is crucial to the efficacy of immunostimulatory mAbs and represents a very attractive point of intervention to enhance their clinical antitumor effects. SIGNIFICANCE: Immunotherapy with immunostimulatory mAbs is currently achieving durable clinical responses in different types of cancer. We show that cross-priming of tumor antigens by BATF3-dependent DCs is a key limiting factor that can be exploited to enhance the antitumor efficacy of anti-PD-1 and anti-CD137 immunostimulatory mAbs.Work at the I. Melero lab is funded by MICINN (SAF200803294 and SAF2011-22831), Departamento de salud del Gobierno de Navarra, Redes temáticas de investigación cooperativa RETIC (RD06/0020/0065), and the European commission 7th framework program (ENCITE and IACT). Work in the D. Sancho laboratory is funded by the CNIC and grants from the Spanish Ministry of Economy and Competitiveness (SAF-2013-42920R) and the European Research Council (ERC Starting Independent Researcher Grant 2010, ERC-2010-StG 260414). The CNIC is supported by the Spanish Ministry of Economy and Competitiveness and the Pro-CNIC Foundation. I. Melero and D. Sancho are funded by the European Commission (635122-PROCROP H2020).S

    Polyfunctional profile of CD8<sup>+</sup> T cells.

    No full text
    <p>PBMCs isolated 2 weeks after the fourth immunization were stimulated <i>in vitro</i> with a SIVpol peptide pool mix for 5 hours. Cells were stained for intracellular production of IFN-γ, TNF-α and IL-2 and degranulation by CD107a. The magnitude of the SIVgag (white), env (grey) and pol (black) responses are shown as stacked means ± SEM for each group (<b>a</b>). The percentage of the total functional response that has a CD28<sup>−</sup>CD95<sup>+</sup> (black bar) or CD28<sup>+</sup>CD95<sup>+</sup> (white bar) is shown as group means ± SEM (<b>b</b>). Pie charts show the proportion of antigen-specific CD8<sup>+</sup> T cells that have 4 functions (purple), 3 functions (yellow), 2 functions (green) or 1 function (light blue) (<b>c</b>). The bar graphs depict the absolute frequency of each of the 15 functional combinations for the DNA (red), 4-1BB (blue), CTLA-4 (orange), Combo (green) and Saline (black) groups in response to SIVgag, env, and pol after background subtraction (<b>d</b>).</p
    corecore