42 research outputs found

    Genetic modifiers of germline TP53 mutation in Brazilian families with Li-Fraumeni and Li-Fraumeni Like syndromes: impact of TP53 intragenic polymorphisms and p53 regulatory genes

    No full text
    A síndrome de Li-Fraumeni (LFS) e sua variante like (LFL) são associadas a mutações germinativas no gene TP53 e predispõe ao alto risco para múltiplos tumores em idade jovem. Analisamos 91 famílias LFS/LFL do sul/sudeste do Brasil para mutações germinativas e haplótipos de TP53 (PIN2, PIN3 e PEX4) e MDM2 (309T-G). A mutação R337H ocorreu em 44,4% das famílias avaliadas. Em 750 controles da região a freqüência populacional da mutação foi 0,3%. A genotipagem de oito indivíduos não relacionados R337H-positivos para 29 TAG SNPs intragênicos demonstrou o mesmo haplótipo raro estabelecendo efeito fundador para R337H. O alelo duplicado no PIN3 apresenta impacto modificador e retardo de 17,1 anos na ocorrência de tumores em famílias com mutação no TP53, enquanto o SNP309 MDM2 modula a idade dos sarcomas de partes moles.Li-Fraumeni syndrome (LFS) and its variant like (LFL) are associated with germline mutations in the TP53 gene and predispose to a variety of cancers at an earlier age. We analyzed 91 LFS/LFL families from southern Brazil for germline mutations in TP53 and polymorphisms in TP53 (PIN2, PIN3, PEX4) and MDM2 (309T-G). The germline TP53 mutation R337H was found in 44.4% of all families included. In 750 controls from the same region, mutation prevalence was 0.3%. Genotyping of eight unrelated R337H-positive individuals for 29 intragenic TAG SNPs showed that they all shared the same rare haplotype confirming the founder effect for the mutation. Duplication of PIN3 had a modifier effect on the age of tumor onset (delay of 17.1 years) in TP53 mutation carriers whereas MDM2 SNP309 modulated age of onset for soft-tissue sarcomas

    Integration of Genomics in Cancer Care

    No full text
    Purpose: The article aims to introduce nurses to how genetics-genomics is currently integrated into cancer care from prevention to treatment and influencing oncology nursing practice. Organizing Construct: An overview of genetics-genomics is described as it relates to cancer etiology, hereditary cancer syndromes, epigenetics factors, and management of care considerations. Methods: Peer-reviewed literature and expert professional guidelines were reviewed to address concepts of genetics-genomics in cancer care. Findings: Cancer is now known to be heterogeneous at the molecular level, with genetic and genomic factors underlying the etiology of all cancers. Understanding how these factors contribute to the development and treatment of both sporadic and hereditary cancers is important in cancer risk assessment, prevention, diagnosis, treatment, and long-term management and surveillance. Conclusions: Rapidly developing advances in genetics-genomics are changing all aspects of cancer care, with implications for nursing practice. Clinical Relevance: Nurses can educate cancer patients and their families about genetic-genomic advances and advocate for use of evidence-based genetic-genomic practice guidelines to reduce cancer risk and improve outcomes in cancer management. © 2013 Sigma Theta Tau International
    corecore